ENVIRONMENTAL IMPACT ASSESSMENT FOR PROPOSED SIX STOREY BUILDING WITH A BASEMENT, LAND LOT A-10079 HULHUMALÈ, MALDIVES

PREPARED FOR
Ms. Maanaa Raafiu
TABLE OF CONTENTS

1. **NON TECHNICAL SUMMARY** ... 9

2. **INTRODUCTION** ... 13
 3.1 **INTRODUCTION** ... 13
 3.2 **PURPOSE OF THE EIA** ... 14
 3.2.1 *The objective of the EIA study is:* 14
 3.3 **EIA REPORT AND EIA IMPLEMENTATION PROCESS** 14
 3.4 **SCOPE OF THE EIA AND APPROACH** 15
 3.5 **STUDY AREA** .. 16
 3.6 **PROJECT BOUNDARY** ... 16
 3.7 **PROJECT JUSTIFICATION** .. 16
 3.8 **PROJECT SCOPE SUMMARY** .. 17
 3.9 **EIA IMPLEMENTATION METHODOLOGIES** 18
 3.10 **REVIEW OF RELAVANT STUDIES** 18
 3.11 **EIA TERMS OF REFERENCE (TOR)** 18

4. **DESCRIPTION OF THE PROJECT** .. 19
 4.1 **THE PROPOSANT** ... 19
 4.2 **THE PROJECT** .. 19
 4.3 **PROJECT ACTIVITIES AND IMPACTS TO ENVIRONMENTAL RESOURCES** 19
 4.4 **PROJECT SCOPE** ... 19
 4.5 **BUILDING DESIGN AND CONCEPT** 20
 4.5.1 *Floor plan* ... 20
 4.5.2 *General finishing standard proposed by the designers* 20
 4.5.3 *Internal finished standards proposed by the designers* 20
 4.5.4 *Foundation* ... 21
 4.6 **CONDITION SURVEY OF THE ADJACENT BUILDINGS** 22
 4.7 **CONSTRUCTION PHASE** .. 22
 4.7.1 *Preliminaries* ... 23
 4.7.2 *Project mobilisation and temporary setup* 24
 4.7.3 *Labour Requirements* ... 25
 4.7.4 *Utilities* ... 25
 4.7.5 *Environmental monitoring during construction activities* 25
 4.7.6 *Excavated soil/construction waste management and disposal* 25
 4.7.7 *Water proofing of basement area* 26
 4.7.8 *Backfill* ... 26
 4.7.9 *Construction methodology* .. 27
 4.7.10 *Road closure and traffic diversion* 27
 4.7.11 *Health and safety* ... 27
 4.7.12 *Demobilisation* ... 28
 4.8 **OPERATIONAL PHASE** ... 28
 4.8.1 *Energy conservation* .. 28
 4.8.2 *Water conservation* ... 28
 4.8.3 *Waste management* ... 29
 4.8.4 *Maintenance* ... 29
 4.9 **PROJECT DURATION AND SCHEDULING** 29

5. **REGULATORY CONSIDERATIONS** .. 31
 5.1 **MINISTRY OF ENVIRONMENT, ENERGY & WATER** 31
 5.2 **ENVIRONMENTAL PROTECTION AGENCY (EPA)** 31
 5.3 **LEGAL FRAMEWORK** ... 31
 5.3.1 **EIA Regulations 2012** ... 31
 5.3.2 **Regulation on Waste Management** 32

Hulhumalé Lot A-10079 (A-33) six-storey building with a basement - EIA 2 | 67
9.3.1 Impacts from Mobilization of Equipment and Labour

Hulhumalé Lot A-10079 (A-33) six-storey building with a basement - EIA
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3.2 Noise, Vibrations and Air Pollution</td>
<td>56</td>
</tr>
<tr>
<td>9.3.3 Excavation earthwork and levelling</td>
<td>56</td>
</tr>
<tr>
<td>9.3.4 Dewatering and ground water quality</td>
<td>56</td>
</tr>
<tr>
<td>9.3.5 Soil erosion</td>
<td>56</td>
</tr>
<tr>
<td>9.3.6 Construction waste</td>
<td>57</td>
</tr>
<tr>
<td>9.3.7 Road traffic</td>
<td>57</td>
</tr>
<tr>
<td>9.4 POTENTIAL POSTIVE IMPACTS</td>
<td>57</td>
</tr>
<tr>
<td>9.5 NEGATIVE IMPACTS</td>
<td>58</td>
</tr>
<tr>
<td>9.6 CUMMULATIVE IMPACTS</td>
<td>58</td>
</tr>
<tr>
<td>9.7 IMPACT MITIGATION MEASURES</td>
<td>58</td>
</tr>
<tr>
<td>9.7.1 Mitigation Cost Elements</td>
<td>59</td>
</tr>
<tr>
<td>10 ALTERNATIVES</td>
<td>62</td>
</tr>
<tr>
<td>10.1 No Development Option</td>
<td>62</td>
</tr>
<tr>
<td>10.2 Development Option</td>
<td>62</td>
</tr>
<tr>
<td>10.3 Alternative Power Source</td>
<td>62</td>
</tr>
<tr>
<td>10.4 Alternative Foundation</td>
<td>62</td>
</tr>
<tr>
<td>11 MONITORING</td>
<td>63</td>
</tr>
<tr>
<td>11.1 Monitoring Costs and Commitment</td>
<td>64</td>
</tr>
<tr>
<td>11.2 Monitoring Report</td>
<td>64</td>
</tr>
<tr>
<td>11.3 Reporting Schedule</td>
<td>64</td>
</tr>
<tr>
<td>12 CONCLUSIONS</td>
<td>65</td>
</tr>
<tr>
<td>13 REFERENCES</td>
<td>66</td>
</tr>
<tr>
<td>14 ANNEXES</td>
<td>67</td>
</tr>
</tbody>
</table>
List of Figures

FIGURE 1: SHOWING THE HULHUMALÈ NEIGHBOURHOOD ONE AND THE LOCATION OF LOT A10079 (A-33) 13
FIGURE 2: STUDY AREA ... 16
FIGURE 3: PROJECT IMPACT BOUNDARY (SHADED AREA RIGHT) AND GEOGRAPHIC COORDINATES OF PROJECT BOUNDARY (LEFT) .. 16
FIGURE 4: FOUNDATION PLAN OF LOT A 10079 ... 22
FIGURE 5: APPROVED METHOD FOR PROTECTION OF ADJACENT BUILDING ... 24
FIGURE 6: COMMONLY USED SAFETY SIGNS IN CONSTRUCTION SITES .. 28
FIGURE 7: SOIL STRUCTURE AT THE LOCATION OF LOT A-10079 ... 39
FIGURE 8: SHOWING THE AMBIENT NOISE LEVEL IN DECIBELS (dB) RECORDED IN THE VICINITY OF LOT A10079 40
FIGURE 9: AKIRI VILLA (LOT 10078) CONDITION OF SOUTHERN BOUNDARY WALL ... 41
FIGURE 10: LOT 10080 CONDITION OF THE BOUNDARY WALL .. 43
FIGURE 11: ENTRANCE TO THE BUILDING IN LOT 10090 AT NIROLHUMAGU (TOP) BACK OF THE BUILDING SHOWING THE CONDITION OF WALL AND WATER LEAKAGE ... 45
FIGURE 12: ROAD CONDITION AT THE PROPOSED DEVELOPMENT SITE ... 45
FIGURE 13: VEGETATION; EXISTING CASUARINA PLANT AND SOME INVASIVE SHRUBS AND CREEPER COVERING THE GROUND LOT (A-10079) .. 46
FIGURE 14: EXISTING TRAFFIC FLOW DIRECTION (RED ARROW) AND TRAFFIC DIVERSION DURING CONSTRUCTION HOURS (ORANGE ARROW) .. 47
FIGURE 15: HULHUMALÈ DEVELOPMENT MASTER LAND USE PLAN (TOP) AND GREEN PLAN (BOTTOM) SOURCE: HTTP://HDC.COM.MV/HULHUMALE/LAND-USE/ (ACCESSED 19TH AUGUST 2016) ... 48

List of Tables

TABLE 1: PROJECT COMPONENTS AND STATUS OF THEIR IMPLEMENTATION ... 19
TABLE 2: TENTATIVE LIST OF LABOUR REQUIREMENTS IS GIVEN IN TABLE X .. 25
TABLE 3: PROJECT SCHEDULE – INDICATIVE ... 29
TABLE 4: MATRIX OF MAJOR INPUTS TO THE PROJECT .. 30
TABLE 5: GROUND WATER SAMPLE LABORATORY RESULTS ... 39
TABLE 6: IMPACT IDENTIFICATION MATRIX .. 55
TABLE 7: SIGNIFICANT IMPACTS, MITIGATION MEASURES AND ASSOCIATED COSTS ... 60
TABLE 8: MONITORING SCHEDULE .. 63
Declaration of the Consultant:

I certify that the statements made in this Environmental Impact Assessment are true, complete and correct to the best of my knowledge and available information at the time of writing this report.

Mahmood Riyaz (EIA03/07)
October 2016
Declaration of the Proponent:

As the proponent of the proposed environmental impact assessment for proposed six storey building with a basement, land Lot a-10079 Hulhumalé, I guarantee that I have read the Environmental Impact Assessment report thoroughly and that to the best of my knowledge all information provided here is accurate and complete.

Ms. Maanaa Raffiu
Acronyms used in the text

BOD Biological Oxygen Demand
COD Chemical Oxygen Demand
DNP Department of National Planning
EPA Environmental Protection Agency
EPAA Environmental Protection and Preservation Act
HPA Health Protection Agency
HDC Hulhumale Development Cooperation
MHTE Ministry of Housing, Transport and Environment
MSL Mean Sea Level
MWSC Maldives Water and Sewerage Company
NPC National Planning Council
STELCO State Electric Company
1. हुलहमले लोट A-10079 (A-33) छह-पट्टी भवन से बाल है। (D) वर्ष 2012 जानकारी (93/4)

2. संख्या 1 में हुलहमले लोट A-10079 (A-33) 67.5 मीटर लंबाई वाले हैं।

3. संख्या 2 में हुलहमले लोट A-10079 (A-33) 152.5 मीटर लंबाई वाले हैं।

4. संख्या 3 में हुलहमले लोट A-10079 (A-33) 137.5 मीटर लंबाई वाले हैं।

5. संख्या 4 में हुलहमले लोट A-10079 (A-33) 12.5 मीटर लंबाई वाले हैं।

6. संख्या 5 में हुलहमले लोट A-10079 (A-33) 2-11 मीटर लंबाई वाले हैं।

हुलहमले लोट A-10079 (A-33) छह-पट्टी भवन से बाल है। (D) वर्ष 2012 जानकारी (93/4)
Hulhumalé Lot A-10079 (A-33) six-storey building with a basement - EIA
2 NON TECHNICAL SUMMARY

1. The report has been prepared for Ms. Maanaa Raafiu M. Kuredhige to fulfill the legal requirement of EIA regulation 2012 Schedule D which requires obtaining environmental clearance from The Environmental Protection Agency prior to construction of a building with a basement or buildings that have a foundation deeper than 5 feet from the ground level. The proposed project involves development of a six storey building with a basement in Hulhumalé Lot 10079 (A-133) located on the north eastern side Dhiggaa Magu in Neighbourhood 1 (N1).

2. The total area of the lot is 152.8m² and the building footprint is on 137.5m². The proposed 6-Storey private residential building will have apartments in mezzanine, first, second, third and fourth floors. The terrace will have a 12.5m² swimming pool and a raised deck. The basement will have provision for accommodation on one half and other half for vehicle parking.

3. The inclusion of a basement floor in the building requires the foundation to be laid at a deeper depth than the foundation of a typical building without a basement and so it is proposed to be at 2.11m below ground level. The biggest concern in excavating for this depth is the protection of foundation s of the adjacent buildings. Since the foundation depth of the proposed building will be deeper than the foundation depth of adjacent buildings. Detailed procedure to be used to construct the foundation of the building is described in the report.

4. Ambient noise levels, road traffic condition, groundwater, soil, vegetation, and an exterior visual survey of the surrounding buildings and roads have been undertaken to assess the environmental condition of the area.

5. The study showed that the road traffic is extremely low approximately one vehicle in every 1-2 minutes. Exterior visual survey of the surrounding buildings show no significant structural defects apart from the minor surface cracking. Road condition of Dhigaa magu Nirolhhumagu 06 Goalhi and Nirolhhumagu 09 Goalhi are in good condition. It is unlikely the existing road structures will be affected from the proposed development. The land plot is covered with various types’ of plants (shrubs and creepers) due to human intervention. The dominating low level bush contains a large number of Ipili pili (Leucaena leucocephala) and a medium sized Casuarina plant was found inside the land plot. The removal bushes, creeper and the Casuarina plant from the project area will be insignificant in terms of environmental impacts.

6. The environmental impact assessment study for construction of six-storey building with a basement in Hulhumalé Lot A10079 found that foundation excavation and dewatering and waste are two main activities that would cause significant negative environmental impacts.

7. Of these a long term impact would be from constructional waste. The waste material generated during construction phase needs to be appropriately disposed if not aesthetic conditions of the surrounding environment will be degraded in addition to health risks, dust odour and smell nuisance to nearby residents is anticipated. Hazardous waste such as waste oil and lubricants if not disposed properly it will contaminate and pollute the groundwater. These impacts would be cumulative and can be managed through proper monitoring and addressing them in a timely manner. Based on the scale of the construction projects that is taking place in Maldives at the time of this writing, impacts associated with this project activity is insignificant.
8. Impact of dewatering on groundwater table will be short-term in nature, including loss of groundwater from the project boundary and vicinity. Major impact of dewatering would be increased salinity of ground water within the vicinity areas for a short period of time. Considering the fact that most of the households nowadays are using piped water for daily household uses, there will be no direct impact to the households from increased salinity but the impact would be felt for the trees nearby the site.

9. The study has evaluated alternative options for the project activities and evaluated potential option for power generation and alternative foundation options. Even though there is no very significant impact from this project after the report has come-up with an extensive monitoring programme that will keep on monitoring environmental changes associated with the project and make necessary adjustment based on the findings of various measured environmental parameters suggested in the monitoring plan.

10. The study found that the proposed project is in line with key legal and policies maintained by the Ministry of Housing and Infrastructure and EPA including Environmental Protection and Preservation Act, EIA Regulations, Hulhumalé Planning Guidelines and Maldives National Building Code.

11. Therefore on the basis of this environmental impact assessment study and the impact mitigation measures proposed in the report will be duly implemented and recommendations are given due consideration, it is concluded that the benefits of the proposed construction of six storey building with a basement is Hulhumalé Plot A 10079 will substantially outweigh its imposition on the environment

3 INTRODUCTION

3.1 INTRODUCTION

The report has been prepared to fulfil the legal requirement of EIA regulation 2012 Schedule D which requires obtaining environmental clearance from The Environmental Protection Agency prior to construction of a building with a basement or buildings that have a foundation deeper than 5ft. The proposed project involves development of a six storey building with a basement in Hulhumalé Lot 10079 (A-33) (Figure 1). The primary objective of environmental assessment for the proposed six storey building with a basement is to address potential impacts associated with the structural damage to neighbouring buildings due excavation to place the foundation.

The proposed 6-Storey private residential building will have apartments in mezzanine, first, second, third and fourth floors. The terrace will have a 12.5m² swimming pool and a raised deck. The basement will have accommodation for the house maid and employees on one half and other half for vehicle parking. One third of the Mezzanine floor will provide small commercial space. The total area of the lot is 152.8m² and the building footprint is on 137.5m². (Figure 3).

The foundation beam of the raft foundation will be at the depth of 2.21m. The foundation beam will have a cover of 60mm while all the other beams will have a cover of 35mm detailed engineering design parameters are given in Annex 3.

Figure 1: Showing the Hulhumalé neighbourhood one and the location of lot A10079 (A-33)
3.2 PURPOSE OF THE EIA

This report will identify the potential impacts of the proposed project and will recommend mitigation measures to minimize such impacts during the proposed works and thereafter. The report will also look at the justifications for undertaking the proposed project components including alternatives to proposed components or activities in terms of location, design and environmental considerations. Impact mitigation measures and a monitoring programme before, during and after the work would also be included.

The findings of this report are based largely on the engineering design and very rapid field assessment and condition survey undertaken during a site visit made to the project site in September 2016 as well as professional experience from similar undertakings elsewhere in the Maldives. The development concept prepared by the project architect and engineering protocols developed by the project engineer has been utilized in order to understand and present the project.

To fulfil the legal requirement of EIA assessment the proponent has requested the consultant the preparation and submission of an Environmental Impact Assessment (EIA) report to EPA to comply with the Environmental Protection and Preservation Act (4/93) and EIA Regulations 2012.

3.2.1 The objective of the EIA study is:

a) To provide an assessment of the potential environmental effects of the proposal and to determine the baseline environmental conditions of the project area
b) Identify, predict and assess environmental impacts that might arise during the construction and operational phases of the project
c) Evaluate the level of significance and magnitude of environmental impacts that will be generated from the project; identify and suggest environmental impact mitigation measures suitable to the conditions in order to eliminate or minimise the negative impact on the environment;
d) To assess how the proposals have been developed to achieve a satisfactory level of environmental performance in line with the EIA Regulations

3.3 EIA REPORT AND EIA IMPLEMENTATION PROCESS

In general the objective of an EIA report is to address the environmental concerns of the development project. The EIA will help to achieve efficient planning, aid in identifying impacts and their potential mitigation measures. The EIA report will also help to promote informed environmental and sound decision making during the development of the project.

The aim of the EIA is to identify, describe and assess in an appropriate manner, proposed development, in accordance with the provisions of guidelines and regulations of the GoM, the direct, indirect and residual effects of the project on the following factors:

- Physical and chemical characteristics of the earth (soil, landform, unique physical features), water (marine and underground), atmosphere (air quality and climate),
- biological conditions including flora (trees/shrubs and endangered species), fauna (birds, land animals, coral and endangered animals) habitats (environmentally sensitive areas protected area etc);
• cultural factors including aesthetic and human interest (scenic views and vistas, wilderness qualities, landscape design, historical and archaeological sites and objects), and cultural status (employment); and

• ecological relationships including eutrophication, disease and insect vectors, and introduction of alien species etc..

This EIA report has been prepared by Dr. Mahmood Riyaz registered EIA consultants (Registration no 03/07) at EPA for the Proponent Ms. Maanaa Raafiu. EIA preparation process is as follow:

1- The consultant prepares EIA application form with necessary relevant documentations for the proponent for submission to EPA, and the proponent submits the application along with project brief and a draft TOR.
2- EPA calls for a scoping meeting with proponent, consultant and relevant stakeholders from government agencies to finalise the draft TOR of the EIA study
3- The consultant undertakes literature review and gathers relevant data and information on the project.
4- Consultant undertakes the field assessment work
5- The consultant analysis data and information gathered and identify environmental impacts, determine mitigation measures, rationally evaluate and suggest alternatives and limitations and propose a monitoring plan.
6- The consultant discusses major findings with the proponent and suggests possible changes to the project/project component.
7- Based on the discussion with the proponent the consultant reviews the EIA and makes necessary changes to the document.
8- The proponent should provide written commitment to undertake mitigation measures and post-development environmental monitoring as per the EIA report.
9- The consultant submits the final EIA to the proponent who subsequently will submit to EPA for review and to issue decision note.

Once the decision note is issued from EPA the proponent is obligated to implement the EIA and matters highlighted in the decision note. Also the proponent shall implement the periodic monitoring programme during construction and operational phase of the project and submit monitoring report as indicated in the EIA report.

3.4 SCOPE OF THE EIA AND APPROACH

The scope of this EIA is based on the consultations held during the scoping meeting at the Environmental Protection Agency on 7th September 2016. The approved ToR highlighted 9 major tasks to be covered including:

1. Description of the proposed project;
2. Legislative and regulatory considerations;
3. Description of the existing environment
4. Potential impacts of the proposed project;
5. Stakeholder consultation
6. Alternatives to the proposed project;
7. Mitigation and management of negative impacts;
8. Development of monitoring plan
A copy of the ToR is attached in Annex 1. The EIA report closely followed the approved ToR for the assessment.

3.5 STUDY AREA

The proposed developmental project is located in Hulhumalé at the north eastern side facing the waterfront. Location of the project is shown in Figure 2.

Figure 2: Study area

3.6 PROJECT BOUNDARY

The construction work of the six storey residential building with the basement will take place within the boundary of lot 10079 (A-13). The Figure 3 shows the total land area of the Lot 10079, geographic coordinates and the building footprint of the proposed residential building.

Figure 3: Project impact boundary (shaded area right) and geographic coordinates of Project boundary (left)

3.7 PROJECT JUSTIFICATION

Land is extremely scarce in the Maldives, especially in Malé, the capital city of the country which only has a size of 5.8 km² and a population of 133,412 (Census 2014) making it the most densely
populated island in the Maldives that exceeds 23,000 persons per km². This creates lack of adequate living spaces with several families living in congested spaces. Even for the busy and wealthy people land scarcity and subsequent congestion makes Male not suitable for relaxation during weekends and holidays. Therefore they often need to get away from the crowded and congested environment to a more relaxing retreat. The proposed six storey building with a basement is a residential building that will be used by the proponent and the family for living and as a holiday retreat to get away from overcrowded environment of Male.

As per the HDC building guidelines residential buildings have a height limitation maximum 18.5m and space that can be covered by the roof. Therefore the maximum number of floor that can be constructed in a building is limited for 5 floors above the ground. In these fairly small land plots confortable space can only be obtained from increase in the number of floors erected above the ground. Average families living with their house maids and own vehicles have difficulties to manage everything within the limited space in the land plot. Therefore the only options that can potentially increase the space are expansion of the building downwards and make maximum use by creating space in the basement. For this reason the proposed six storey building has included a basement to optimise the land by creating living and vehicle parking space in the basement.

The proposed six storey building with a basement will be erected on a raft foundation. This is the most commonly used foundation type in the Maldives. This method is used because the water table is very shallow and fluctuates with change in tide and the soil is less compact and has fairly low bearing capacity. Also the raft foundations have the advantage of reducing differential settlements as the concrete slab resists differential movements between loading positions.

There are also several other socio-economic benefits associated with the project. These include:

- Employment opportunities for local labour force including consultants contractors
- Improved living standards
- Increased potential commercial space and source to generate revenue to local land owners
- Contributes to reducing the congestion issues facing Malé

3.8 PROJECT SCOPE SUMMARY

The project mainly involves construction of a six storey residential building with a basement on Hulhumalé lot A-10079 (A-33). The proposed project involves the following key components:

Preconstruction
- Plot allocation and approvals
- Fencing

Construction
- Mobilization of labour force and equipment
- Mobilization of construction materials
- Building construction works (excavation, dewatering, foundation etc)
- Connection to utility services
- Finishing
- Demobilization

Operational phase
- Provision of utility services
- Provision of municipal services
3.9 EIA IMPLEMENTATION METHODOLOGIES

The findings of this report are based largely on the engineering design and very rapid field assessment and condition survey undertaken during a site visit made to the project site in September 2016 as well as professional experience from similar undertakings elsewhere in the Maldives. Environmental impacts are predicted by use of widely used descriptive checklists and its significances are evaluated by the use of Leopold matrices. Expert judgment and professional opinion as well as review of relevant EIA studies have also been widely used throughout the impact assessment and evaluation process. These methods are described in detail at the relevant section of this EIA Report.

3.10 REVIEW OF RELAVANT STUDIES

As part of relevant literature review and preparation of the report, the following EIA studies on Hulhumalè Lot 10079 (A-13) and establishment of water supply systems conducted in various parts of the Maldives have been reviewed and used as reference;

- EIA for proposed construction of 385 housing units Hulhumalè island, Kaafu Atoll, Maldives, by CDE Pvt. Ltd (2012)

- EIA, Multi-Storey Building at H. Point Villa Malé City, Maldives, Sandcays (2015)

- EIA For Proposed 11-Storey Building Development at M. Thulhaadhooge, Male’ by Mohamed Zuhair and Ibrahim Shakir (2015)

- EIA for the proposed development of a tertiary hospital at Hulhumalè’ by CDE, August 2015

- EIA Multi-Storey Building at H. Blue Haven, Malé City, Maldives, by Sandcays, 2015

- EIA Tower C of Amin Avenue, Hulhumalè, by Mohamed Zuhair and Ibrahim Shakir, (2016)

- EIA for the development of N3-56 and N3-57 plot under the proposed 3,000 housing units project at Hulhumalè’, Kaafu Atoll, by CDE Pvt.Ltd, (2016)

3.11 EIA TERMS OF REFERENCE (TOR)

Scorping meeting to determine the scope of the EIA and agree on the Terms of Reference (TOR) of the EIA report with the stakeholder was held at EPA on 7th September 2016. The approved Terms of Reference is attached in Annex 1.
4 DESCRIPTION OF THE PROJECT

4.1 THE PROPONENT

The proponent of the project is Ms. Maanaa Raafiu, M. Kuredhige. Lot No A-10079 (A-33) is registered in her name, agreement no (HDC/LDS/09/621) between the proponent and HDC.

Details of the proponent are given below:
Miss. Maanaa Raafiu
NIC no: (A-034104)
M. Kuredhige,
Male, Maldives
Tel: 7773885
E-mail maana@adkenterprices.com

4.2 THE PROJECT

The proposed project involves the construction of a six-storey building with a basement which will be used as maid’s accommodation and a vehicle garage at Hulhumalé Lot 10079 (A13) located on the eastern side in neighbourhood 1 (N1). The building will have residential apartments in mezzanine, first, second, third and fourth floors. The terrace will have a 12.5m² swimming pool and a raised deck. One third of the Mezzanine floor will provide small commercial space.

4.3 PROJECT ACTIVITIES AND IMPACTS TO ENVIRONMENTAL RESOURCES

4.4 PROJECT SCOPE

<table>
<thead>
<tr>
<th>Component</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design - concept, architectural, engineering, and structural</td>
<td>Completed</td>
</tr>
<tr>
<td>Approval of the design from HDC and Ministry of Housing and Infrastructure</td>
<td>Completed</td>
</tr>
<tr>
<td>Preparation of EIA and approval from Environment Protection Agency (EPA)</td>
<td>On going</td>
</tr>
<tr>
<td>Selection of construction contractor</td>
<td>On going</td>
</tr>
<tr>
<td>Project Mobilization equipment and machinery</td>
<td>Construction stage</td>
</tr>
<tr>
<td>Site clearance</td>
<td>Construction stage</td>
</tr>
<tr>
<td>Fencing</td>
<td>Construction stage</td>
</tr>
<tr>
<td>Excavation to lay the foundation</td>
<td>Construction stage</td>
</tr>
<tr>
<td>De-watering</td>
<td>Construction stage</td>
</tr>
<tr>
<td>Construction and development of the project</td>
<td>Construction stage</td>
</tr>
<tr>
<td>Mixing and application of concrete</td>
<td>Construction stage</td>
</tr>
<tr>
<td>Storage and handling of cement and other construction materials</td>
<td>Construction stage</td>
</tr>
<tr>
<td>Roofing, plumbing, wood works, tiling and railing</td>
<td>Construction stage</td>
</tr>
<tr>
<td>Plastering, painting and finishing</td>
<td>Construction stage</td>
</tr>
<tr>
<td>Connection of utilities</td>
<td>Construction stage</td>
</tr>
<tr>
<td>Demobilisation</td>
<td></td>
</tr>
</tbody>
</table>
4.5 BUILDING DESIGN AND CONCEPT

The proposed six storey building with the basement will be developed as a private residential building with all facilities and services provisions. Half of the basement of the building will be used as accommodation for the maid’s apartment with bedroom, bathroom, sitting room and storage etc., and the half of the basement will be used as a vehicle parking garage for the owner and building residents. The mezzanine floor will have a two bedroom apartment and commercial space.

4.5.1 Floor plan

First and second floor will have two bedroom two apartments at each floor. The third and fourth floors will be owner’s apartment. The third floor will have guest room with attached bathroom, wet and dry kitchen, master dining room large open-air balcony and master sitting room. The fourth floor will have Master bedroom, master toilet and spa, a gym two more bedrooms with attached bathroom and a library. The fifth floor is the terrace with raised open sun deck, day beds and a 12.5m² swimming pool. Floor plan Design and drawings are provided in (Annexes 4a- 4e). All the floors can be accessed either via the staircase or via the elevator that can carry 6 Pax. Some of the general design standards proposed for the building are given below.

4.5.2 General finishing standard proposed by the designers

1- 150x150 mm concrete parapet shall be casted at the bottom of all exterior
2- 150x150 mm reinforced concrete (RC) mid beam shall be casted at mid height of all walls
3- RC lintels are to be provided on top of all doors and windows
4- Proper water proofing solutions are to be proposed by the contractor and approved by the engineer
5- Steps of the staircase shall be finished with homogenous tiles c/w nosing tiles & skirting approved by the architect
6- All floors except toilets shall be finished with 600x600mm homogenous tiles approved by the architect
7- All toilets, showers, sluice rooms and their respective lobbies to have non-slip ceramic floor tiles.
8- Toilets shower 25mm lower than the FFL of respective floors. All the tiles should be specified by the contractor and approved by the client
9- All exterior walls shall be full block masonry c/w plaster on both sides
10- "Master seal 550" or equivalent chemical should be applied in all the toilets and balcony floors up to 1 feet high on the walls after screening
11- All the walls exposed to rain including open voids should be plastered with "Reomix 720" or equivalent chemical
12- “Master tile 30” or equivalent chemical cement should be used for all the tiling.
13- "Master tile 530lm" or equivalent should be used for grout

4.5.3 Internal finished standards proposed by the designers

Floor
• Parking area and toilets - 1200mm x 125mm wide tongue & groove timber planks
• FL 2 - 600 x 600 ceramic homogeneous floor tiles (semi-gloss finish)
• FL 3 - 300 x 300 ceramic homogeneous floor (non skid)
• FL4 - 600 x 600 ceramic homogeneous floor tiles (non skid)
• FL5 - industrial paint
Skirting
- Parking area - 12mm thick x 100mm high timber skirting for bed room to complete with wood stain & varnish
- Other floors - 12mm thick x 100mm high tile skirting

Wall
- Parking area and toilets - 120mm thick cement blocks with 15mm TK plaster finish. Exterior weather proof paint finish on wall putty.
- Apartments - 600 x 300 gloss homogeneous wall tiles

Ceiling
- Parking area exposed slab with smooth putty finish
- Other areas gypsum board ceiling on timber frame

The conceptual design of the project has been approved by Ministry of Housing and Infrastructure and HDC. The approved design concept of the project is attached in Annex 2. The building design has integrated cross-ventilation and natural lighting as an important aspect for energy saving. A lift will be installed as per the requirements as the building exceeds 6 storeys.

4.5.4 Foundation
The building will stand on a raft foundation. Raft foundation is the most commonly used foundation type in the Maldives. This method is used because the water table is very shallow and fluctuates with change in tide and the soil is less compact and has fairly low bearing capacity. Also the raft foundations have the advantage of reducing differential settlements as the concrete slab resists differential movements between loading positions.

Reinforced concrete raft foundations will be laid after site set-out and excavation, dewatering and protection. Concreting will be done on site. Imported Gravel and river sand will be used for construction work. Foundations will be at a depth of 2.1 meters from ground level. Details of foundation plan is shown in Figure 4.

When all the necessary excavation is complete, a 50 mm thick lean concrete (Grade C15) layer will be laid to provide a level surface to assemble the reinforcement of foundation raft slab and beams. Once the lean concrete layer has hardened, the raft foundation works will be carried out starting with steel work. The concrete works for the raft foundation will be done using C30 Grade concrete. An anti-separation additive would be used to promote bonding of the concrete mix, since the concrete works will be done underwater.
4.6 CONDITION SURVEY OF THE ADJACENT BUILDINGS

A condition survey of the surrounding buildings is conducted for the purpose of this EIA report. Major findings are given in relevant sections in the description of the existing environment.

4.7 CONSTRUCTION PHASE
4.7.1 Preliminaries

Fencing
The area surrounding the land plot will be properly fenced and only authorised person wearing proper gear would only be allowed to enter the fenced area. Security information will be displayed and precautionary signs at the site in location that can be visualized from a fairly long distance will be placed and strictly followed.

Land clearance
Site clearance will require removal of all vegetation from each site. The only notable species on site is the Ipil Ipil (leucaena leucophella) trees, which were planted on site during the afforestation efforts of Hulhumalé. It is a highly invasive species and its removal is not considered as a significant impact as the area will be landscaped post-completion of the project.

Green waste will be disposed to a site specified by HDC and waste transportation will follow the regulations set by EPA.

Excavation
The footprint of the building is 137.5m² area will have to be excavated up to a depth of 2.3 m resulting in 316.25 cbm of soil from the land plot. The earth material excavated will be used for back filling and the rest will be disposed to a site instructed and approved by HDC. HDC has not identified a site yet.

Dewatering
The water table is at a ~1.2m below the ground level. The foundation depth is 2.2m therefore dewatering will be required. Dewatering will be undertaken using a pump. The exact amount of water required for dewatering has not been calculated as it required very detailed groundwater investigations. A rough estimate would be 137,000 litre of water needs to dewatered from the site. Dewatering will be required for foundation laying period only, which may be between 1-3 weeks. Continuous pumping is not expected.

The resultant water will be pumped to a location determined by HDC and it will be disposed as instructed by HDC. During the dewatering process, any important or mature trees in the vicinity of the project site that may be adversely affected due to dewatering would be watered daily to prevent water shortages. Neighbouring household wells will be monitored for salinity and water level to provide adequate compensation to affected parties. Even if regular monitoring was not undertaken, complaints related to groundwater would be resolved.

Scaffolding
The Contractor will provide, erect, maintain, dismantle and clear away at completion proper and adequate including that required for subcontractor and suppliers. Putlog holes shall be made good to match the adjacent surface as the scaffolding is dismantled.

It will be the Contractor’s responsibility to have all safety precautions in connection with the scaffolding including the provision of all bracing, scaffold boards, toe boards and the like and for entire sufficiency for the work.

Protection of Adjacent buildings
The foundation of the proposed six storey building with a basement at Hulhumalé Lot 10079 (A-13) will be about 2.1m below the existing ground level. Since the proposed building is with a basement
the foundation normally tend to have deeper foundation therefore basement for the proposed building will be below ground level.

Buildings are construction at the surroundings adjacent plots. To protect the footings that coincide or fall in the same grid will be protected by inserting 300mm x 6mm MS sheets into the ground over lapping each other to a depth of at least 400mm below the proposed excavation depth with 65x65mm Angle bracing held by 100x75mm timber bracing for foundation protection. For protection of existing walls along the western perimeter of the proposed site, it is proposed to be done in parts so as to prevent loosening of soil from the bottom of existing foundations and partial excavations shall exceed a width of 0.6m at a time and masonry retaining wall must be completed immediately after the excavation. Engineer has recommended using solid concrete blocks for the masonry works and allowing at least 24hour intervals between each excavation. The foundation protection method approved for the proposed building is shown in Figure 5.

![Diagram of foundation protection method](image)

Figure 5: Approved method for protection of adjacent building

4.7.2 Project mobilisation and temporary setup

Clearing the bush (low vegetation) and fencing of the site and mobilization of the project will commence once EIA is approved. Full mobilization of the project will be undertaken once the fencing work is over necessary protection and excavation permit obtained from HDC. The contractor will responsible for the staff accommodation and providing the protection for construction material and equipment on site. Construction workers and staff will not be accommodated on site they will commute to work daily. The site will have 24x7h security hence a temporary security post will be constructed.
4.7.3 Labour Requirements

Table 2: Tentative list of labour requirements is given in Table x.

<table>
<thead>
<tr>
<th>Category</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labour</td>
<td>15</td>
</tr>
<tr>
<td>Supervisor</td>
<td>2</td>
</tr>
<tr>
<td>Special equipment operators</td>
<td>2</td>
</tr>
<tr>
<td>Administration</td>
<td>3</td>
</tr>
<tr>
<td>Security</td>
<td>4</td>
</tr>
</tbody>
</table>

Specialist labour will be required to undertake specific tasks. A total of 26 temporary employment may be created through the proposed project. However, no specific quota for local or foreigners have been established.

4.7.4 Utilities

Energy needs during the construction phase of the project will be met through existing STELCO electricity grid in Hulhumalé. It is estimated that between 10-15kW of electricity per day may be necessary during the construction phase of the project mainly to operate construction machinery such as concrete machinery, lighting, lifting, etc.

Water demand for the construction work will be met by connecting to the existing MWSC water desalinated water network. Estimated amount of water required for the construction work is within 1-3 cbm per day. Bottled water from nearby shops will be purchased and used for drinking. Groundwater will not be used during the construction.

4.7.5 Environmental monitoring during construction activities

The Environmental Monitoring the construction phase will focus on impacts of excavation and dewatering to the buildings at the vicinity of the project. Onsite structural engineer will attend the complaints and inspect excavation and dewatering works and keep daily logs of start and end times of relevant works. Assess structural damages against the baseline condition survey of the adjacent building by engineer prior to start of work and upon completion of work. Ground water of the area will be checked once or twice during the dewatering period to check for salinization of the ground water. Test records will be kept for future comparison and monitor the salinity level of the ground water.

4.7.6 Excavated soil/ construction waste management and disposal

During the preliminary phase soil excavated from will be disposed of areas designated by the HDC. The contractor will ensure that the waste is properly handled as per the EPA guidelines and EPA licenced party to meet with regulatory requirements of waste management regulation. Part of the excavation material will be used for backfilling after laying the building foundation.

It is estimated that during the construction phase, the project will generate 1-3 tons per day which will be collected on site, transported to the waste disposal site at Hulhumalé. None of the waste will be placed outside the project boundary at any time. Temporary waste storage will be within the project-demarcated area.

Construction waste generated during the construction period, will consist of mixed sand, concrete, empty cement bags, wood and wood pallets, iron, steel, paint, plastics, broken pieces of concrete
blocks, nets, rods, cardboards, etc. Construction waste transported and disposed of at the designated waste management site in Hulhumalé on daily basis after completion work.

All waste generated during construction phase and finishing phase will be collected at the end of each work day and transported and disposed off the designated waste management site at Hulhumalé. Handling and transportation of both excavated soil and construction waste will be outsourced to EPA Licensed parties to meet with regulatory requirements of waste management regulation. Standard practices during waste handling and transportation will be ensured.

Hazardous waste such as empty paint cans will be kept separate and disposed according to the standards established by EPA.

4.7.7 Water proofing of basement area

Water proofing of the basement area is very important as part of the basement will be used for accommodation. All the necessary facilities such as toilet bedroom sitting room and storage etc., will be provided in the basement floor. Since the existing sewerage network in Hulhumalé is a gravity system one of the concerns raised during the scoping meeting was that extra pumping mechanism may be required to connect the existing system and prevent flooding of the toilet and basement areas.

To prevent potential flooding the entrance to the basement is raised 150mm above the ground level and the mezzanine floor entrance is about 1.8m above the ground level. All the walls of the basement will be concealed with water proofer and a water sealer with appropriate chemical treatments. The water proofer expands as it dries to become part of the wall. The water sealer will act as waterproof concrete as it take moisture of the wall to form its waterproof crystalline structure.

Water will be pumped out from a sump installed at the basement regularly. The sump will be connected with a perforated drainage pipe to collect water and then pumped out from the well.

4.7.8 Backfill

Hard and dry material excavated from the site will be used for back filling after the laying the foundation. Dry density of the material used for backfilling will be 1600 kg/m³. The following is a list of standard procedure followed for backfilling foundation excavations.

- The backfill of excavations shall be placed in horizontal layers not exceeding 300mm in thickness. Each layer shall be compacted by hand or other mechanical means to the required density before the next layer is added.
- Care shall be taken when filling or back-filling to avoid any wedging action or eccentric action upon or against the structure of the work.
- Before placing of fill, the surface of the sub-grade shall be compacted at optimum water content to the same percentage of maximum dry density required of subsequent lay.
- The Consultant will inspect all compacting devices that the Contractor proposes and shall have the right to reject any device which he feels is unsuitable for the job.
- Heavy equipment for spreading and compacting fill and backfill shall not be operated closer to walls than a distance to the difference in height between the top of the footings and the layer being compacted.
- When back-filling behind retaining walls, basement walls and the like the said structures shall be kept propped during the complete operation. The hydraulic compaction of fill shall not be permitted and the back filling shall be carried out in layers not exceeding 150mm thick.
- Each layer shall be compacted to 90% of the modified compaction. No back filling shall be carried out until the wall concrete has achieved its full works cube strength and care shall be exercised so as not to damage the external tanking membrane and its protection.
4.7.9 Construction methodology

For each casting, materials will be controlled and stored outside the site with the permission from HDC. Once the main substructure casting is over, site will be backfilled up to the basement floor slab bottom level. While casting of components, quality of the concrete will be tested on site using slump cone apparatus. To achieve the required strength, precautionary measures will be taken to maintain concrete mixing consistency, recommended admixtures will be added to concrete and further strength will be verified from the cube results. General construction material to be used are specified below (Specific details provided in Annex 3):

- Cement: Ordinary Portland cement
- Sand: Imported river coarse sand
- Aggregate: Imported 20mm thick aggregate
- Steel – 415 grade steel

4.7.10 Road closure and traffic diversion

The proposed building is located at Dhigga Magu and access to the Lot is generally from Dhigga Magu which is the outer most main road of Hulhumalé. The lot is within the block between Nirolhu Magu 6 goalhi and Nirolhu Magu 9 Goalhi.

Traffic flow in Dhigga Magu is N-S direction. Prior to casting of excavation and foundation permit will be obtained from HDC and permission for road blocks from Dhigga Magu-Niralhu Magu 06 Golhi junction and Dhigga Magu-Niralhu Magu 09 Golhi junction is required and the traffic from N-S will be diverted to Niralhu Magu Goalhi 6. Sections of the Dhigga Magu may be made to open for at least Cycles and Pedestrians. The foundation work is estimated to take around 6-10 hours while the concrete slabs for the rest of the floors will be around 5-8 hours.

4.7.11 Health and safety

Occupational health and safety issues will be dealt with at all times during the construction process of the proposed project. Protection of employees from likely adverse effects will be one of the core duties of the Proponent or Contractor. Health and safety briefings will be undertaken on a regular basis. All machineries and equipment must be operated by trained and experienced personnel wearing necessary safety gears. Noisy or dusty works would be minimized or stopped during peak hours to reduce dust and noise related pollution for pedestrian residents and beach users. Construction safety measures such as safety nets all around the building framework will be placed at all times. Other safety measures such as use of welding masks and use of safety belts will be made mandatory. Barricades, warning signs will be placed on the road during casting or works involving the use of roads such as power, water and sewer connections. Safety of pedestrians and vehicles will be ensured by appropriate signage, safe scaffolding and netting some of which are shown in the following Figure 6.
Workers would be informed of local values, respect for religion and culture in addition to health and safety issues at site. Engineers and/or supervisors will brief workers as and when necessary and ensure safety precautions are in place. Personal protective equipment will be made available to all workers. First aid will be available at site for minor injuries. For serious and emergency issues, injured will be immediately taken to Hulhumalé Hospitals for treatment.

All required equipment will be made available. In this regard, all construction workers will wear safety clothing including overalls, gloves, safety helmets, masks and safety boots during work at all times. All workers and personnel entering the premises will be given hard hats and safety shoes.

4.7.12 Demobilisation

Demobilization plan depends on the contractor. In general, the proponent advocates a phased demobilization plan to commence in the last month of the contract. Demobilization will be undertaken after completing required construction works and finalization of the project. Upon demobilization of equipment and site inspection by the concerned HDC, EPA, Maldives Energy Authority (MEA), etc., may be requested.

4.8 OPERATIONAL PHASE

Key activities identified throughout the operational phase of the proposed buildings would be building maintenance, energy and water conservation, waste management and general maintenance of the building. Following are the aspects that will be covered during the operational phase of the project.

4.8.1 Energy conservation

 Electricity requirements during the operational phase will be obtained from the public electricity grid in Hulhumalé provided by STELCO. It is estimated that around 10-40kW of electricity per day will be required during the operation. The existing installed capacity can meet the electricity required for the proposed six-storey building with the basement. The proposed building will be fitted with energy-efficient fittings, including light bulbs and energy efficient non HCFC based inverter type air-conditioners. Solar water heating would also be considered.

4.8.2 Water conservation

 All freshwater requirements for the building will be obtained through the public water supply network provided by MWSC desalinated plant in Hulhumalé. Estimated water consumption for building is within the range 2-7m3 of desalinated water per day. For the purpose of discharging all wastewater from toilets, kitchens, laundries, etc will use the main sewerage network of MWSC.
4.8.3 Waste management

During the operational phase of the building, covered large waste bins will be provided at the ground level for all residents to place their waste and for licensed waste management parties to collect and dispose. As the building will be used by approximately 10-15 person maximum waste generation on daily basis will be less than 50kgs. HDC provides municipal waste collection service and there are already established public waste disposal bins in various parts of Hulhumalé. Household waste generated in the building will be segregated disposed off at the nearest public waste disposal bin.

4.8.4 Maintenance

The building will be managed and maintained by the staff employed by the proponent. These include regularly checking for damages and undertake repair works, undertake services requirements such as cleaning, security and servicing to the building. Fire safety and fire fighting equipment on each floor and regularly checked by service providing companies. Maintaining a good and healthier environment outside of the building will be ensured and security personnel will be looking after the security of the building.

4.9 PROJECT DURATION AND SCHEDULING

The project is expected to take approximately 1 year to complete including the time needed for seeking necessary approvals after the EIA Approval. The main milestones include; obtaining approvals, mobilization, excavation and foundation, dewatering, construction work Roofing plumbing wood works, tilling and railing, plastering, painting, finishing and demobilisation. Table 3 shows the project schedule.

<table>
<thead>
<tr>
<th>Ser</th>
<th>Tasks</th>
<th>Start</th>
<th>End</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EIA preparation and approval</td>
<td>08/09/16</td>
<td>09/23/16</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>Selection of construction contractor</td>
<td>09/18/16</td>
<td>10/18/16</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>Project Mobilization equipment and machinery</td>
<td>10/18/16</td>
<td>12/02/16</td>
<td>45</td>
</tr>
<tr>
<td>4</td>
<td>Site clearance</td>
<td>12/02/16</td>
<td>12/05/16</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Fencing</td>
<td>12/05/16</td>
<td>12/12/16</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>Excavation to lay the foundation</td>
<td>12/12/16</td>
<td>01/11/17</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>Dewatering</td>
<td>01/22/17</td>
<td>01/22/17</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>Construction work</td>
<td>01/22/17</td>
<td>01/22/17</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>Connection of utilities</td>
<td>02/01/17</td>
<td>02/13/17</td>
<td>14</td>
</tr>
<tr>
<td>10</td>
<td>Roofing, plumbing, wood works, tilling and railing</td>
<td>02/13/17</td>
<td>02/26/17</td>
<td>30</td>
</tr>
<tr>
<td>11</td>
<td>Plastering, painting and finishing</td>
<td>02/26/17</td>
<td>03/13/17</td>
<td>30</td>
</tr>
</tbody>
</table>

Table 3: Project Schedule – Indicative
<table>
<thead>
<tr>
<th>Input resource(s)</th>
<th>Source/type</th>
<th>How to obtain resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Workers</td>
<td>Skilled and semi-skilled labour, Labour (15) Supervisor (2) Special equipment Operator (2)</td>
<td>Trained and licensed staff of the contractor</td>
</tr>
<tr>
<td>Machinery (excavator, operational tools)</td>
<td>01 excavator 02 Pickup truck 01 Concrete machine Other operation tools</td>
<td>To be obtained and operated by the contractor. Contractor will be required to bring to the site machines in good working conditions to avoid loss of time due to breakdown of machines, vehicles and equipment.</td>
</tr>
<tr>
<td>Construction material</td>
<td>Construction materials: timber, sand, cement, aggregate, reinforcing steel bars, electrical cables, circuit boards, PVC pipes, HDPE pipes, pipes, building blocks, tiles, plywood, gypsum board, diesel, petrol lysaght roofing material, paint, varnish, chemicals, thinner, nets, etc</td>
<td>import, locally obtained, contractors material</td>
</tr>
<tr>
<td>Spare parts</td>
<td>Spare parts for all machineries</td>
<td>Contractors and local suppliers</td>
</tr>
<tr>
<td>Water and Electricity</td>
<td>Water and electricity needed during</td>
<td>Water from MWSC water network, electricity from STELCO public grid</td>
</tr>
<tr>
<td>Telecommunication and TV cables</td>
<td>Telephone and cable TV services</td>
<td>From local service providers</td>
</tr>
<tr>
<td>Output</td>
<td>Anticipated quantities</td>
<td>Comments</td>
</tr>
<tr>
<td>Excavated material Dewatering</td>
<td>Soil and sand Water</td>
<td>Part will be disposed off other part will be used for backfilling Water disposed off appropriately</td>
</tr>
<tr>
<td>Construction Waste oil and lubricants</td>
<td>Minor amount</td>
<td>Gathered in a barrel and sent to Thilafushi through existing waste management system</td>
</tr>
<tr>
<td>Waste during operational phase</td>
<td>Minor amounts municipal solid waste and kitchen waste</td>
<td>Appropriately collected and disposed to the designated municipal waste management area in Hulhumalé</td>
</tr>
<tr>
<td>Construction Noise and light</td>
<td>Localized</td>
<td>Excavator and truck operation will generate some noise during the project execution. Work will not be carried out late into the night to avoid disturbance to local population.</td>
</tr>
<tr>
<td>Sewage</td>
<td>Minor amount</td>
<td>Connected to the MWSC sewerage network</td>
</tr>
</tbody>
</table>
5 REGULATORY CONSIDERATIONS

This section highlights relevant government stakeholders, their roles and reviews relevant legal framework applicable to the proposed project.

5.1 MINISTRY OF ENVIRONMENT, ENERGY & WATER

The Ministry of Environment and Energy (MEE) is key Ministry in the government mandated with the protection of the environment. Environmental responsibilities assigned to MEE includes formulating environmental policies, coordinating, preservation and management of the environment throughout the country, and enforcing Environmental Protection and Preservation Act (EPPA) (04/93). Under Article 5(a) of EPPA, Environmental Impact Assessment (EIA) is mandatory for projects that may cause potential harm to the environment. The EIA report has to be submitted to the EPA for approval before commencement of a project. As per this legislation, any project that has any undesirable impact on the environment can be terminated without compensation by MEE.

5.2 ENVIRONMENTAL PROTECTION AGENCY (EPA)

EPA is the key regulatory body on environment, which is an autonomous body formed under the umbrella of MEE. It is mandated with implementing the EIA process in the Maldives, implementing the Environment Act and subsequent regulations on behalf of MHE, regulating water and sanitation, biodiversity conservation, waste management and coastal zone management. Also, it is responsible for developing environmental standards and guidelines in the country.

5.3 LEGAL FRAMEWORK

Four regulations pertaining to the proposed project have been reviewed and the project’s conformity to these has been assessed.

a) EIA Regulations 2012
b) Regulation on Waste Management
c) Regulation on dewatering
d) Regulation on Environmental Damage Liabilities
e) Regulation on Management, Use and Control of HCFC Substances and Zone Layer Protection Act

5.3.1 EIA Regulations 2012

The most important governing law as far as the environmental impact assessment is concerned is Environment Protection and Preservation Act (Law No. 4/93) (EPPA).

EPPA mandates all development projects in the Maldives to undertake an Environmental Impact Assessment prior to undertaking any such project.

Further the EPPA states an impact assessment study shall be submitted to the relevant Government authority before implementing any development project that may have a potential impact on the environment.

It goes on to say that the relevant Authority of Government shall formulate the guidelines for environmental impact assessment and shall determine the projects that need such assessment as mentioned in above.

The law also gives power to the relevant Government authority to terminate any project that has any undesirable impact on the environment. A project so terminated shall not receive any compensation.
According to the EPPA waste disposal, oil and poisonous substances any type of waste, oil, poisonous gases or any substance that may have a harmful effect on the environment shall not be disposed within the territory of the Maldives.

Government of Maldives reserves right to claim compensation for all the damages that area caused by the activities that are detrimental to the environment.

5.3.2 Environment Impact Regulations, 2012 & other relevant regulations

Under the provisions of EPPA the Government of Maldives has formulated and gazetted Environmental Impact Assessment Regulations (2012) detailing the EIA process and the EIA preparation.

In addition to EIA regulations, other relevant regulation will be followed in development and implementation of the proposed project. These regulations include ban on coral mining. Coral mining from house reef and atoll rim reef has been banned since 1990. Sand mining from any island has also been banned since March 2000.

The EPPA, EIA Regulations and other relevant regulations will be duly taken into consideration in preparing the EIA report and in the implementation of the project.

5.3.3 Regulation on Waste Management

Waste management Regulation (No. 2013/R-58) is more recent coming into effect on 6 February 2014. The regulation was gazetted on 05 August 2013. The regulation provides set of comprehensive guidelines on collecting, storing, transporting and managing waste. In the preamble its states the objective of the regulation is in line with the Article 22 of the Constitution which requires that development activities designed for achieving socioeconomic targets should ensure that environment and its constituent living component is not compromised and that resources are utilized effectively.

The regulation talks of the responsibilities of collection, transport, treating and storage of waste. It also talks of management centres and landfill sites and managing hazardous waste. Various sectors and entities (including tourist resorts) encouraged having their own waste management plans consistent with the Regulation.

EPA is the implementing agency of environmental law and the implementing agency of the EIA regulation.

Wastes produced from the project will be disposed in compliance to this regulation.

5.3.4 Dewatering Regulation

This regulation is drafted under the Act number 4/93 (Maldives Environment Protection and Preservation Act) and issued on 31st December 2013. The main purpose of the regulation is to minimize the impact of dewatering activities on ground water table and also to decrease the impacts on the receiving environment of the disposed water. The regulation encourages prevention of contamination and damage to ground water table, protect the living organisms as well as the environment from the negative impacts due to dewatering activities. This regulation is to be enforced by EPA of the Maldives.
If dewatering is to be carried out for any development purposes in any of the islands in Maldives, it shall be done by gaining a written approval from the enforcing agency or an agency assigned by the enforcing body. However, dewatering done at individual level i.e., from a bore well or for the purpose of installing a bore well and water drawn for agricultural purposes are considered exceptions from the regulation.

Dewatering can only be to be carried out, after gaining approval by submitting “the dewatering approval form” in the annex 1 to the enforcing body for approval with all the required documents expressed and with an administrative fee of Rf500. Water quality tests results also have to be submitted as one of the required component.

The regulation also guides on where and how the extracted water shall be disposed of, and how it has to be handled. According to the regulation, permission can be granted for dewatering at a stretch for a maximum of 28 days, for which a sum of MVR500 should be paid per day. This amount is liable to be increased with the number of days increased. A fine not exceeding Rf100 million may be charged for violation.

This will require pumping water during excavation works. The proponent will be required to get an approval from EPA before commencing excavation.

5.3.5 Regulation on Environmental Damage Liabilities, (R- 2011-9)

Under the Environmental Protection and Preservation Act (No. 4/93), the Ministry of Housing and Environment formulated the Environmental Damage Liabilities Regulation in February 2011, which encompasses the basis to avoid environmental deterioration, extinction of biological resources, environmental degradation and avoid wastage of natural resources. The main purpose of this regulation is to stop unlawful activities on environment and adequately implement a fining procedure for violations as well as implement a compensation mechanism on environmental damages. Its Schedules form the basis for levying fines on various environmental components and activities. One of the key objectives of the environmental liability regulation is also to practice polluter-pay-principles in the Maldives.

Hence, the proposed project will be subject to this Regulation for any activity outside of the EIA scope and Environmental Decision Statement.

5.3.6 Regulation on Management, Use and Control of HCFC Substances, 2010

The HCFC Regulation is developed under the Environmental Protection and Preservation Act (4/93) towards regulating phasing out of import, use, selling of HCFC substances by 2011 and completely eliminating use of HCFC substances in the Maldives by 2020 through controlling importers, registering importers, establishment of a quota system, control mechanisms for selling, maintenance of import, selling, purchase and service providers statistics. Under Ozone Layer Protection Act 14/2015 the government has banned import of HCFC based equipment starting from 31" May 2016.

5.4 Building Code

The building code hand book of Maldives details the guidelines and standards that should be used for designing building in Maldives. All construction projects are required to meet the standards specified in the building code. All construction activities of the project will follow the Building code.

The registered architect and engineer ensures that project has been designed according to the building code of Maldives.
5.5 PERMITS REQUIRED FROM HDC

5.5.1 Approval of the concept and site plan
The HDC will have to approve the concept plan and site plan for the proposed project before the EIA could be approved. This project has approval from HDC (See Annex 2).

5.5.2 Request for Lot boundary delineation
It is required to fill and submit a form to HDC to delineate the boundary of the building prior to commencement of fencing for construction. Necessary form that needs to be completed to delineate the lot boundary, excavation permit, and building usage are available at the HDC website. These regulations and necessary forms are available for downloading at the HDC website

5.5.3 Excavation Permit
Excavation permit from HDC has to be obtained prior to commencement of excavation to lay the building foundation.

5.5.4 Request for foundation check
Prior laying the foundation of the building foundation check request should be sent to HDC by filling a designated form prepared by HDC. The building cannot be erected on the foundation unless the foundation has been checked and approved by HDC inspectors.

5.5.5 Building usage permit
This permit should be obtained from HCD prior to using the building for any purpose. A request could be filed though submitting a completed form prepared for the designated purpose.

5.6 PERMITS REQUIRED FROM EPA

5.6.1 EIA Approval
The most important environmental permit to initiate project work would be a decision regarding this EIA. The EIA Decision Note, as it is referred to, shall govern the manner in which the project activities must be undertaken. This EIA report assists decision makers in understanding the existing environment and potential impacts of the project. Therefore, the Decision Note may only be given to the Proponent after a review of this document following which the Ministry may request for further information or provide a decision if further information is not required. In some cases, where there are no major environmental impacts associated with the project, the Ministry may provide the Decision Note while at the same time requesting for further information.

5.6.2 Dewatering Permit
A dewatering permit is required for the project during excavation works. A separate application will have to be made to the EPA to get the permit. Permission can be granted for dewatering at a stretch for a maximum of 28 days, for which a sum of Rf500 should be paid per day. This amount is liable to be increased with the number of days increased.

5.7 RESPONSIBLE INSTITUTIONS
The main government institutions that have roles and responsibilities relevant to this project are summarised below.
5.7.1 Ministry of Housing and Infrastructure
The Ministry of Housing and Infrastructure is the main agency responsible for overall approval of housing projects. The concepts for the construction of the housing units have been approved by the HDC. Detailed drawings for the housing unit may need to be submitted to the ministry once the EIA has been approved by the Environment Ministry and the project is initiated.

5.7.2 Ministry of Environment and Energy
The Ministry of Environment is mandated for the effective implementation of the Environmental Protection Act of the country and has the statutory power over issues related to the environment. It has the central control over the environment protection, management, conservation and environmental emergencies. The Ministry operates mainly at a policy level and the more regulatory and technical assessment activities are mandated to the Environmental Protection Agency (EPA). In this respect EPA has now been mandated to manage all issues relating to Environmental Impact Assessment of individual projects.

The Ministry of Environment also seeks the advice of National Commission for the Protection of Environment (NCPE) on all significant environmental matters. The commission is appointed by the president and is mandated to advice the Minister of Environment on environmental matters such as environment assessment, planning and management, and political decisions with regard to the protection of environment.

5.7.3 Housing Development Corporation Ltd
Housing Development Corporation is a state-owned enterprise formed with the mandate of managing the Hulhumalé Development project. HDC acts as a master developer, a builder and as a regulator overseeing detailed planning, architectural guidelines and building regulations. A copy of this EIA will have to be submitted to HDC. Guidelines that has been set by the HDC for development has to be strictly followed:

- Planning development Guidelines for residential plots (14th January 2016)
- Apartment complex development guidelines (29th December 2013)
- Condominium flats development guideline

Necessary form that needs to be completed to delineate the lot boundary, excavation permit, foundation check and building usage are available at the HDC website. These regulations and necessary forms are available for downloading at the HDC website (https://hdc.com.mv/downloads/)

5.8 COMPLIANCE
In general, the proposed development is in compliance with the laws and regulations described above. Additional approvals required before operational stage is mentioned above.
6 METHODOLOGIES

6.1 DATA COLLECTION METHODS

The primary data was collected through the qualitative and quantitative methods of data collection. Qualitative data was collected through filed visits/site walks in the neighbourhood. Specific methodologies adopted to assess various aspects of the environment have been discussed in details in the respective sections of this report.

The secondary data was collected through literature reviews which included a study of the following:

- Policies, Acts and Regulations;
- Similar project study documents

In undertaking baseline studies using available data, knowledge and experience have been used. Key issues have been identified during scoping as given in the TOR. Based on the scoping need for further in-depth studies and additional data requirement were identified.

6.1.1 Bio-physical environment

Physical and biological information on the environment was obtained by using appropriate and commonly used methodologies for similar EIA studies in the Maldives. Water sampling and plot boundary location data collected using handheld Trimble GeoXM® GPS. Noise levels in and around the project site was measured by using a sound meter; traffic flow and direction was obtained by undertaking a traffic survey on a working day and a weekend; Vegetation in the site was visually assessed; Water samples were taken by digging a well to water level and sampling it to be analysed at the MWSC laboratory; Climate and metrological data obtained from Maldives Meteorological Services.

6.1.2 Structural condition survey

Structural condition of the existing buildings surrounding the Lot was obtained by visual observation and taking photographic documentation of structural damages.

6.1.3 Socioeconomic Environment

Relevant socio economic data for Hulhumalè was obtained from publicly available published sources. Sources of information are appropriately referenced in the reference list.

6.1.4 Potential uncertainties and data gaps

Most of the environmental impact assessments in the Maldives are often undertaken in a relatively short period of time. Therefore they may not be very robust, accurate and the most comprehensive. Particularly buildings and construction related EIA impacts assessments are very general and can only be improved through experience and from continued monitoring of similar projects. Proper access and assessment of the condition of the nearby structures and adjacent buildings and their structural integrity cannot be properly assessed and evaluated without proper engineering background. This problem is compounded by the absence of long-term studies in other parts of Maldives. Hence, most EIA’s end up being based on an environmental snapshot of specific point in time. However, experienced EIA specialists can deliver a close match to reality based on a number of similar assessments. In this regard, the following gaps could be identified in information.

- Little knowledge on geology and geotechnical aspects
• Limited information and access to adjacent buildings and structures.

Efforts have been made to consider and address these gaps in the assessment and in designing mitigation measures and the monitoring programme.
7 EXISTING ENVIRONMENTAL CONDITIONS

Baseline data on the existing environment of Hulhumalé for the proposed six-storey building with a basement would include general geography, demographic status, ecologically protected areas, and other environmental aspects pertinent to the project. A detailed description of baseline data compiled through the surveys and monitoring is provided in this section.

7.1 DEVELOPMENT OF HULHUMALÉ

Hulhumalé is a man-made island though reclamation of the shallow reef flat located on the south eastern end of North Malé Atoll (Figure 1). The Phase I of Hulhumalé reclamation, consisting of 188 hectares, began on 16th October 1997 and was completed by June 2002. The first settlement of Hulhumalé was officially inaugurated on the 12th of May 2004 with a resident population of just over 1,000.

At the end of 2013, Hulhumalé Phase I has reached a population of 30,000, which is the halfway mark of the target population of 60,000 to be achieved at the culmination of Phase I by the year 2020. Hulhumalé Phase II which included reclamation of 240 hectares was completed in 2015, targeted to accommodate a total population of 100,000. Development vision of Hulhumalé is to establish higher standards in the quality of living in the Maldives. Hulhumalé Phase I and II will be a harmonious combination of residential, commercial and industrial components acting as a catalyst to entice broad based investments in the fields of commerce, education, health, recreation, tourism, fisheries and a number of other related areas by both foreign and local parties.

7.2 TOPOGRAPHY

Average elevation of the island is 2.0 m above the mean sea level. At Ibrahim Nasir International Airport, highest point of the runway is 1.2m above mean sea level and thus has only about 0.5m clearance at highest high water level.

7.3 BIOPHYSICAL ENVIRONMENT

7.3.1 Ground water quality

In order to assess the baseline quality of ground water, samples from the site was taken on 20th of September 2016 for analysis at the MWSC Laboratory. A pit was dug at the almost the center of the proposed development site until ground water was reached. The sampling bottle was washed with the same ground water at the site and the sample was transferred to Malé’ sent to the MWSC laboratory for water quality analysis. Laboratory tests results of ground water analysis and the GPS location of the sample is given in Table 5. Ground water from the site will not be used for any purpose during construction or operational phase of the project. However ground water quality assessments can be used as a valuable indicator to monitor seepage or spill of contaminants into the ground during the lifetime of the project activities.

The results show that the groundwater of the site shows that it is free from contamination and do not have potential health risks. Sulphate levels identified to be little high and the salinity level is very low, this may be due the fact that the sample was taken during rainy season where large amount of ground water runoff is seepage into the ground. Groundwater will not be used for any purposes for the proposed development. The original water test result from MWSC is given in Annex 6.
Table 5: Ground water sample laboratory results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Ground water</th>
</tr>
</thead>
</table>
| Location (Geographic coordinates) | Latitude: 4.21808N
 | Longitude: 73.545743E |
| Physical appearance | Cloudy with particles |
| Temperature °C | 21.0 |
| Conductivity µs/cm | 948 |
| pH | 7.92 |
| Salinity | 0.47 |
| Hardness Total | 560 |
| Total dissolved solids (mg/L) | 88 |

7.3.2 Soil

Hulhumalé is a reclaimed land and no proper soil is developed in the island. To determine the subsurface condition a well was dug manually until ground water is reached. The ground water is 1.1m depth. Generally the subsurface content includes poorly sorted unconsolidated mixed coral sand, coral fragments and seashells. The soil structure of the Lot A-10079 is given below.

![Soil Structure Diagram](image)

Figure 7: Soil structure at the location of Lot A-10079

7.3.3 Noise level

Ambient noise levels were recorded using a sound meter that comes as an Android Smart phone application. These applications are fairly accurate and user friendly. Noise level was recorded from three different location around the proposed land plot for development. Locations 1# Dhiggaa magu Infront of the Lot A10079, Location 2# Nirolhumagu 06 Goalhi- Dhigaamagu Junction and location 3# Nirolhumagu 09 Goalhi- Dhigaamagu junction. Ambient noise level readings were taken in the late afternoon on 20th September 2016 (Figure 8). Only average noise levels recorded were taken as baseline. Figures shows the maximum minimum and average ambient noise level recorded in three
location and 30 second frequency in graphs. The measurements show that in location #1 the ambient noise levels was between 53 and 75 and the average was 67 dB. In location 2# the ambient noise level was between 53 and 75 and the average was 66 dB very close to the range and average in location 1#. In location 3# ambient noise level was between 43 and 87 and the average was 71 dB.

![Graphs showing ambient noise levels in dB recorded in the vicinity of Lot A10079.]

Figure 8: showing the Ambient noise level in decibels (dB) recorded in the vicinity of Lot A10079.

7.3.4 Surrounding buildings

Buildings have already been constructed in all the allocated land plots around the land Lot A10079. Lot no 10078 which lies north, and Lot no 10080 on the south and Lot no 10090 is on the east of the land plot.

Askani Villa built on Lot no 10078 is a guest house, is a relatively new three story building third of the land is left built as free space. The building is used as guest house. Some minor surface cracks were wound on the southern wall of the building, some of these cracks are more than 2-3m long and few mm wide. On the boundary wall connecting the free space with main building fairly large crack was observed and this is widest crack observed in this building at the adjacent wall to the Lot A10079 (Figure 9).

![Image of Akiri Villa entrance and Southern boundary wall cracking.]

Akiri Villa Entrance Dhiggaa Magu
Southern boundary wall Cracking
Figure 9: Akiri Villa (Lot 10078) condition of southern boundary wall.
Fairly new building is constructed on Lot 10080 which is used as a local residential building. The building has four floors with all the modern fixtures and facilities. The northern wall of the building is heavily cracked and evidence of extensive use of crack sealers were found on the boundary wall adjacent to Lot A-10079 (Figure 10).
Cracked boundary wall

Cracked boundary wall

Northern boundary wall -cracked

Northern boundary wall- cracked

Figure 10: Lot 10080 condition of the boundary wall
The entrance to the building on lot A10090 is in Nirolhumagu, Jilbab store. The eastern wall of this building is adjacent to the Lot 10079 on the western side. The eastern boundary wall of the building marks the western boundary of the Lot A10079. The building seems to be still under construction but people are living in this building. The eastern boundary wall of the building is not in a very good condition particularly the second and third floors where water leakage is evident and the impact is visually apparent from the walls (Figure 11).

No significant structural defects apart from the minor surface cracking were observed from the exterior visual inspection. Assessment of building condition from the inside was not carried out as part of this EIA as it is more of an engineering assessment. It is advised that the proponent carries out such an investigation at the noted sites with the consultation of a civil engineer.
7.3.5 Road condition

Road condition of Dhiggaa magu and adjacent Nirolhumagu 06 Goalhi- and Nirolhumagu 09 Goalhi-Dhiggaa magu on both sides of the block are in good condition. The pavement and on both sides of the road is wide and in good condition. Road condition is not going to affect the overall structure of the road but the road might get dirty from the construction activities and will be cleaned after the construction work on daily basis.
7.3.6 Vegetation

As this is reclaimed land there is no natural vegetation in the islands. The land plot is covered with various types of plants (shrubs and creepers) due to human intervention. The dominating low lever bush contains a large number of Ipili pili (Leucaena leucocephala) (Figure 13). A medium sized Casuarina plant was found inside the land plot. All these bushes and the Casuarina plant have to be cleared for construction. The removal of bushes, creeper and the Casuarina plant from the project area will be insignificant in terms of environmental impacts.

Figure 13: Vegetation; existing Casuarina plant and some invasive shrubs and creeper covering the ground Lot (A-10079).

7.3.7 Traffic survey

Traffic flow in Dhiggaa Magu is from north to south. The traffic survey on Dhiggaa magu was conducted on two days, an official working day (20th September 2016) and a holiday (Saturday, 1st
October 2016). Both surveys took place on afternoons. The survey included count of vehicles passing in front of the lot in Dhiggaa Magu for half an hour during the survey periods. The survey shows extremely low traffic on Dhiggaa magu. On the first survey the total number of motor cycle count was 15 and the number of cars and trucks 4, no bicycles were encountered. On the second day the number of motor cycles count was 25, cars and truck 5 and two bicycles were counted. Therefore the traffic in Dhiggaa Magu is very low, a car or a motor bike passes the area in every 2 minutes or one and half minute.

Therefore the diversion of traffic during the construction will not cause noticeable inconvenience to be public. The traffic that is coming from north to south can be diverted to Nirolhumagu Golhi 6 and the traffic can enter to Dhiggaa Magu from Nirolhumagu Golhi 9 and continue the ride on Dhiggaa magu (Figure 14). Traffic flow in Nirolhu Goalhi 6 is from E-W and in Nirolhu Goalhi 9 W-E.

![Existing traffic flow direction (red arrow) and traffic diversion during construction hours (Orange arrow)](image)

Figure 14: Existing traffic flow direction (red arrow) and traffic diversion during construction hours (Orange arrow)
7.4 SOCIOECONOMIC ENVIRONMENT

The latest population census conducted in 2014 shows that the total population of Malé city is about 155,000 including the over 20 thousand foreigners living in Malé. Hulhumalé is a part of Malé City and is one of the most rapidly urbanizing islands in the Maldives. The pace and development is fueled by the new guesthouse business, targeted for European and Asian holiday makers. High-end service apartment and real estate business is growing rapidly in the island and more are being built.

Hulhumalé is now referred to as the Youth City. It is looked upon as a city of planned developments with modern amenities Hulhumalé plan accommodates wide range of land uses; from commercial and residential to light industrial and institutional uses and so forth (Figure 15). Hulhumalé master plan reflects on the importance of accessibility to green & open spaces to maximize the economic and aesthetic value of Hulhumalé, known as a Green Plan. Also the plan designed to maximize the natural potential of the island as a waterfront oasis known as Blue Plan.

Figure 15: Hulhumalé development master land use plan (top) and Green Plan (bottom) Source: http://hdc.com.mv/Hulhumalé/land-use/ (Accessed 19th August 2016).
According to HDC the population is around 30000. But with number of new properties coming up and with growing number of guest houses including the daily traffic of coming and goings, the population would be close to over 40,000 or even more. This represents approximately 26% of the total population of the Great Malé Region.

To meet the housing demand and address the many urban problems in Malé, Ministry of Housing and Infrastructure is HDC has expended the land area of Hulhumalé and reclaimed 240 hectares under the 2nd phase of Hulhumalé development project to facilitate to meet the present and future needs of housing in Malé and also provide enough land for commercial and industrial development in great Malé region.

7.4.1 Education

Hulhumalé has two government schools (Grade 1 - 12), an International School and Preschools they are Hulhumalé Preschool, Lale Youth International School, Ghaazhee School and Rehendhi School. Land has been allocated for development of student campus and other facilities for Maldivian National University in Hulhumalé.

7.4.2 Connectivity and Transportation

There is excellent connectivity and transportation service between Hulhumalé, Malé and Ibrahim Nasir International Airport and within Hulhumalé residential and commercial areas.

Ferry service between Malé and Hulhumalé is operated by Maldives Transport and Contracting Company Plc. Ltd and operates daily between 5.30am-1.30am with ferries every 10-30 minutes leaving both from the Malé and Hulhumalé ferry terminals.

Bus Service: School Bus Service, air-conditioned Public Bus Service and Airport Bus Service are available in Hulhumalé. Also taxi service is available in the island.

Maldives Post Ltd. provides postal services are available in Hulhumalé seven days a week, and telecommunications services provided by Dhiraagus and Wataniya. Cable TV and internet services are provided by private local companies and Banking services are provided by Bank of Maldives Plc.

7.4.3 Banking

Banking services through the branches of Bank of Maldives and Habib Bank are already available in Hulhumalé. Islamic bank will is scheduled to open its services in Hulhumalé very soon.

7.4.4 Health

The Hulhumalé’ hospital is the central health care provider of the island run by the Government. This is 2 storey, 50 bed hospital, with 3 ambulances. It is located within close proximity to the Residential Neighborhood district and strives to eliminate the need to travel to other island hospitals for medical treatment by providing a wide range of medical facilities including minor surgery, obstetrics and gynecology, pediatrics, outpatient clinic rooms a dressing room, a room for immunizations and antenatal checks, an operating theatre, a labour room, and a private pharmacy attached.

7.4.5 Utilities

Utility services are provided by the existing utility service providers in Malé’. Water and sewerage facilities’ are managed by Maldives Water and Sewerage Company Ltd. (MWSC) and electricity is provided and managed by the State Electric Company Ltd. (STELCO).
7.4.6 **NGOs and associations**

There are number of registered NGOs and associations operating the Hulhumalé a list of some of the NGOs and associations are provided below:

- Hulhumalé Association for Women’s Improvement
- Hulhumalé Innovative Youth Association
- Hulhumalé Environment and Youth Development
- Hulhumalé Women’s Sports
- Hulhumalé Youth Development Association
- Hulhumalé Sports Club
- Hulhumalé Crime Prevention Committee
- Hulhumalé Development Society

7.4.7 **Socio economic impact**

Hulhumalé is growing fast with various types of investments and small to large scale commercial activities, local corner shops, guest houses, supermarkets, shopping malls, office complexes, factories, to small cafes, tea shops, convenience stores, and various other commercial outlets that would cater for the needs of the growing population and daily visitors to the island.

Existing supporting infrastructure, transport and other services is a catalyst to attract local entrepreneurs and expatriate community seeking employment and venture into diverse commercial activities in the island. The ongoing developments will facilitate economic growth for greater Malé Region and bring overall economic benefits to the country. The proposed project will create short term employment opportunities particularly for the people living greater Malé region.
8 STAKEHOLDER CONSULTATION

The scoping meeting to determine the scope of the EIA report was held on 7th September 2016 at EPA. During the meeting the stakeholder were identified and the scope of the EIA report was determined.
Methods used for stakeholder consultation include direct communication and interviews with nearby residents around the project, formal meeting such as the scoping meeting and telephone communication with service providers.

8.1 KEY STAKEHOLDER

As per the TOR the key stakeholders identified are
1- Hulhumalé Development Cooperation (HDC)
2- State Electric Company (STELCO)
3- Health Protection Agency (HPA)
4- Maldives water and Sewerage Company (MWSC)
5- Architects and engineers

8.2 EIA SCOPING MEETING

EIA scoping meeting was held on the 7th of September 2016. Most of the stakeholders apart from MWSC and HPA that is listed in the TOR was present in the meeting (meeting attendance is in Annex 7). The meeting was chaired by Mr. Yazeed Ahmed, Director EPA. The architect gave a briefing on the proposed six storey building with a basement and explained the design details and answered the technical questions. Most of the clarifications and questions were focused on the basement floor and providing necessary utilities and facilities acceptable for human living conditions. The following issues and concerns were raised
1- Sewer connection to the existing sewer network in Hulhumalé as the sewerage network system is a gravity system there might be difficulty in directly connecting the basement toilet to the system. (EPA requested to consult with MWSC on this matter and the matter was discussed with MWSC)
2- Electricity connection is not an issue as the main connection panel is in the ground floor not in the basement
3- Waste management, EPA requested to keep waste disposal bin in a secure and enclosed area with in the premises of house as per the EPA regulations. There should be a roof in the area to where the bin is placed to protect it from rain and the bin should have a lid to open and close.
4- EPA requested to consult with HPA and HPA was consulted.
5- With regard to potential flooding of the basement, the architect explained that the basement is well protected and all the necessary precautions have been considered in the design.
6- A separate permission should be obtained from EPA for dewatering

8.3 CONSULTATION WITH MWSC

Stakeholder consultation with MWSC was held on September 19th via telephone conversation with Mr. Mohamed Didi Tel: 3323209. Mr Didi explained that the maximum elevation that can be directly connect with MWSC sewerage network is 2 feet below ground level. If the connection is below that level an extra pump and sump (junction) needs to use. Therefore in the case of the proposed six-storey building the basement where the toilet is below 2 feet from the ground, a sump will be constructed at the level of toilet pipeline and a pump will be used to pump the sewage to the main junction of the
existing sewage network. As per the architect and engineers of the building this has already been considered and they will strictly follow the regulation and guidance from MWSC on this matter.

8.4 CONSULTATION WITH HPA

Health Protection Agency (HPA) was contacted and the engineering drawings of the building were sent via mail to see if they have any concern or suggestion. HPA has checked the drawings and informed by phone (Fathimatha Shabana, Senior Public health programme officer, contact: 3014416) that they have checked the ventilation and safety exist particularly in the basement and it is in compliance with the standards maintained by HPA. They have also stressed to eliminate potential conditions favorable for proliferation of mosquitoes during the construction period.

8.5 1.1 CONSULTATION WITH NEARBY RESIDENTS

Consultation was held with residents nearby the proposed development via direct interviews during the field visit. In general they have no issues as long as the construction is proceeding as per the regulation after obtaining the necessary permissions from the concerned government authorities. They are ready to live and tolerate with the minor inconvenience that will cause during the construction period.

8.6 MAIN CONCLUSIONS FROM THE STAKEHOLDER DISCUSSIONS

Most of the concerns raised during the scoping meeting was addressed and discussed with the relevant authorities and the following are the outcomes of the discussions;

For the proposed six-storey building with the basement, a sump will be constructed at the level of toilet pipeline and a pump will be used to pump the sewage to the main junction of the existing sewage network to dispose wastewater and sewage from the basement toilet.

The main connection panel is in the ground floor not in the basement therefore electricity connection is not an issue as

Waste disposal bins will be located within the boundary in an enclosed area protected from rain and sun and disposed off to the waste management area of Hulhumalé on daily basis.

Necessary permission from EPA and HDC on dewatering, foundation excavation etc will be obtained prior to commencement of construction work.

Nearby residents have no serious issues as long as the construction is proceeds as per the regulation and after obtaining the necessary permissions from the concerned government authorities

List of people met/contacted during scoping meeting and the stakeholder consultation.

<table>
<thead>
<tr>
<th>Name</th>
<th>Designation</th>
<th>Contact No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zinaf</td>
<td>Senior urban planner (HDC)</td>
<td>7674221</td>
</tr>
<tr>
<td>Nafiz</td>
<td>Senior Municipal Officer (HDC)</td>
<td>7787156</td>
</tr>
<tr>
<td>Ibrahim Aslam</td>
<td>Technician (STELCO)</td>
<td>7779886</td>
</tr>
<tr>
<td>Amjad Mohamed</td>
<td>Engineer (STELCO)</td>
<td>7783632</td>
</tr>
<tr>
<td>Ahmed Thahseen</td>
<td>Architect (SPACE Pvt.Ltd)</td>
<td>7773846</td>
</tr>
<tr>
<td>Ahmed Shameem</td>
<td>Proponent’s representative</td>
<td>7586586</td>
</tr>
<tr>
<td>Name</td>
<td>Position</td>
<td>Email</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Fathimath Reema</td>
<td>Director EPA</td>
<td>Fathimath.reema@epa.gov.mv</td>
</tr>
<tr>
<td>Yazeed Ahmed</td>
<td>EPA /Director</td>
<td>Yazeed.ahmed@epa.gov.mv</td>
</tr>
<tr>
<td>Dr. Mahmood Riyaz</td>
<td>Consultant</td>
<td>7890307</td>
</tr>
<tr>
<td>Mohamed Didi</td>
<td>Technician (MWSC)</td>
<td>3323209</td>
</tr>
<tr>
<td>Fathuimath Shabana</td>
<td>(HPA)</td>
<td>3014494</td>
</tr>
</tbody>
</table>
9 POTENTIAL IMPACTS AND MITIGATION MEASURES

This section of the report identifies the potential environmental impacts and possible issues that could arise during construction and operational phase of the proposed project. Their identification of potential impacts does not mean that they would necessarily occur or that they could not be successfully mitigated.

Possible impacts arising from the construction and operation works are categorized into reversible and irreversible impacts. Reversible and irreversible impacts are further categorized by intensity of impacts (negligible, minor, moderate and major) for identifying best possible remedial (mitigation measures) action to be taken. Below are the impact categories:

- Negligible: the impact is too small to be of any significance (Reversible)
- Minor: the impact is undesirable but accepted (Reversible)
- Moderate: the impact give rise to some concern but is likely to be tolerable in short-term, or will require value judgment as to its acceptability (May or may not be Reversible)
- Major: the impact is large scale giving rise to great concern; it should be considered unacceptable and requires significant change or halting of the project (Irreversible)

Severity of impact is assessed by reviewing the engineering design, detailed site plan as well as comparison of development with the existing environment and construction methodologies employed. Mitigation measures are derived based on the site specific assessment as well as similar project elsewhere in the Maldives. Impact identification matrix is provided in Table 6. Potential impacts and their mitigation measures and detail discussion is the following sections. Table 7 gives a summary of impacts their magnitude reversibility and duration.

9.1 IMPACT IDENTIFICATION

The following section describes in detail and discusses the main potential environmental impacts that have been identified and predicted for the proposed construction of six storey building with a basement in Hulhumalé Plot A-10079. Identified potential impacts are divided into construction phase and operation phase environmental impacts.

9.2 LIMITATION/UNCERTAINTY OF IMPACT PREDICTION

The methods used to predict and evaluate the environmental impacts that may be associated with the proposed construction of six storey building with a basement in Hulhumalé Plot A-10079 may not be the most comprehensive. The main shortcoming of these methods is that impacts are predicted by reviewing the survey data collected during the field visits and information revealed by the designers and engineers, therefore the assumptions have been made to predict the impacts which may or may not be accurate. Also, the data collected during the field visit is limited, which subsequently limits the overall understanding of even the short term environmental conditions (wave condition, currents, and littoral movement). Nonetheless, within the time limitation of EIA field data collection and report preparation the methods used are concise and provide a general overview as well as the range of impacts that can affect the environment. Given that there may be uncertainties in terms of structural failures of neighbouring structures as well as potential claims of damage or nuisances such as availability of groundwater during the dewatering period, it is important to undertake monitoring as described in the monitoring programme given in this EIA report.
Table 6: Impact identification matrix

<table>
<thead>
<tr>
<th>Impact</th>
<th>Construction phase Activities</th>
<th>Operational Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Site setup and Fencing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Work force</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Excavation and earthwork</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dewatering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concrete work and finishing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>of the building</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demobilization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use of building</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Waste and wastewater</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power and water consumption</td>
<td></td>
</tr>
<tr>
<td>Site setup and Fencing</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Work force</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Excavation and earthwork</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dewatering</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Concrete work and finishing of the building</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Concrete work and finishing of the building</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Concrete work and finishing of the building</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Concrete work and finishing of the building</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Concrete work and finishing of the building</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Concrete work and finishing of the building</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Concrete work and finishing of the building</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Demobilization</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Use of building</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Waste and wastewater</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Power and water consumption</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Key: (-) Negative impact (+) Positive impact (X) no impact

9.3 IMPACTS AND MITIGATION MEASURES

Construction phase can be considered as the period in any developmental project that causes major direct and indirect long and short-term impacts on the environment. Anticipated potential direct and indirect environmental impacts from the proposed construction of six storey building with a basement in Hulhumalé Lot A10079 include the following:

- Mobilization of Equipment and Labour
- Noise, Vibrations and Air Pollution
- Excavation earthwork and leveling
- Dewatering and ground water quality
- Soil erosion
- Construction waste
- Road traffic

The following paragraphs will provide detailed impacts and mitigation measures during the construction phase of the project.

9.3.1 Impacts from Mobilization of Equipment and Labour

Mobilization of excavator and concrete machine and other equipment and machinery needed for the project during the construction phase will have minor impact on the environment. The major impact
of the mobilization would be aesthetic unattractiveness of the vehicles and equipment on site. Operation of the equipment and vehicles will increase the ambient noise levels, emission of CO₂ and increase in dust particles that will carried to a distance from the construction site. Noise and dust pollution may have health implications to the people living nearby areas.

Impacts: All sorts of motorized equipment, requiring fuel, lubrication and maintenance will be used on the site. Many will be fitted with lead batteries. Therefore the potential accidental spillage and contamination of the soil and the sea by hydrocarbons as well as the careless disposal of batteries exists during the construction period.

9.3.2 Noise, Vibrations and Air Pollution

During the mobilisation of equipment and operation of heavy machinery for construction work, it is anticipated that significant noise will be generated. Minor ground vibration is anticipated during movement of excavators and heavy vehicles. Dust and emissions from vehicle and machinery exhausts will degrade the air quality. However, these impacts will be short term and can be mitigated to avoid nuisance to the nearby residents. With proper mitigation measures, it is unlikely that noise, vibration and air pollution impacts will cause long term effects such as human health risks leading to increased public and private health costs.

9.3.3 Excavation earthwork and levelling

Excavation will be undertaken for laying the concrete foundation. The footprint of the building is 137.5 m². The area will be excavated up to a depth of 2.3 m resulting in 316.25 cbm of soil from the land plot. The earth material excavated will be used for back filling and the rest will be disposed to a site instructed and approved by HDC.

Technically excavation causes unloading and reloading of subsoil and the intensity of these impacts depends on subsoil characteristic and excavation geometry (depth, width and length). Hence, the unloading effect for small excavations such as the proposed project has negligible influence on displacements. Structural impacts to the nearby buildings and roads are highly unlikely; however, it has been identified as having potential implications, if not undertaken carefully.

9.3.4 Dewatering and ground water quality

Surface run off of polluted water with suspended impurities (sand cement and other construction material mixed with water) may seep into the ground water and contaminate the ground water aquifer. Substantial quantities of water would be used in the construction activities. Concrete mixing will be undertaken within the project premises except during casting of slabs and foundation.

Dewatering from the proposed development is roughly estimated to be 137,000 litre. Impact of dewatering on groundwater table will be short-term in nature, including loss of groundwater from the project boundary and vicinity. Major impact of dewatering would be increased salinity of ground water within the vicinity areas for a short period of time. Considering the fact that most of the households nowadays are using piped water for daily household uses, there will be no direct impact to the households from increased salinity but the impact would be felt for the trees nearby the site.

9.3.5 Soil erosion

Soil erosion due to rainwater runoff is often areas excavated to lay the building foundations. Excavated areas during the rainy season will be exposed and rainwater runoff may carry the
sand which in turn will weaken the soil and may cause water saturation. Therefore, it would be necessary to plan foundation works in dry season or in a way that will minimize the exposure of excavated area to rain.

Soil erosion will weaken the structures standing on them. In extreme flood events excavated areas will exacerbate the potential to extensive damage or collapse the adjacent building.

9.3.6 Construction waste

Solid waste stream of a construction project will include a mixtures of packaging waste such as cement bags and cardboards, concrete waste, iron, timber, gypsum boards, aluminum, nets, wire, glass, plastic etc that are generated from construction activities. The waste material generated during construction phase needs to be appropriately disposed. If not properly disposed off aesthetic conditions of the surrounding environment will be degraded in addition to health risks, dust odor and smell nuisance to nearby residents. Hazardous waste such as waste oil and lubricants if not disposed properly it will contaminate and pollute the groundwater.

Material storage in the construction sites should be in a way that does not cause any hindrance to local movement and daily routine of the workforce within the site. Stockpiles of construction material has to be properly covered to protect from rain, dust, heat and erosion.

It would be necessary for the contractor transport the construction waste in vehicle liscenced to transport waste and dispose to designated site allocated by HDC for the disposal of construction waste in the waste management site in Hulhumalè.

9.3.7 Road traffic

Vehicular and pedestrian movements during loading and unloading of materials to site, especially during the concrete works will disturb the road traffic in Dhigaa Magu. At present, vehicular movement in the project is low therefore it will have a negligible impact on the traffic flow in the area.

9.4 POTENTIAL POSTIVE IMPACTS

Potential positive impact of the project would be creation of short term employment opportunities for the locals. It is also believed that there will be several opportunities for locals including direct or indirect employment and provision of goods and services during the project implementation. The project will also contribute to improvement in living condition, minimization of congestion and improved aesthetics and modernization of the built environment.

The project will increase the value of the land/project site, improve the living environment and provide economic opportunities and contribute directly and indirectly to health and wellbeing. These are considered as important positive impact of the project.
9.5 NEGATIVE IMPACTS

1- Loss of existing vegetation on the site (negligible impact).
2- Short-term increase in ambient noise level, dust and vibration negligible disturbance to the road traffic.
3- Impaired visual impacts from the presence of the construction equipment and site.
4- Potential short term increase in salinity of ground water aquifer due to dewatering
5- Increase in electricity demand but no need to increase the existing capacity of the diesel generators in Hulhumalé

9.6 CUMMULATIVE IMPACTS

Land plots in the block where the A-10079 is located is already constructed except the few Lots at the north eastern end of the block. As mentioned earlier the proposed construction Lot is surrounded by already constructed buildings. Therefore, it is very unlikely environmental impacts from development construction activities will be compounded during the construction period. Therefore the magnitude of impacts such as dust and noise emission and increased traffic congestion etc is unlikely to go beyond what has been described in this report in this area on a collective basis.

9.7 IMPACT MITIGATION MEASURES

Table 6 below lists of significant impacts identified above in Section 10 and describes the corresponding mitigation measures that should be put in place during implementation of the proposed construction of six storey building with a basement at Hulhumalé Plot A10079. In summary the impact mitigation measures proposed should entail:

1) Mitigation measures for dewatering and foundation excavation include the following:
 • To minimise prolonged exposure of soil erosion dewatering operations will be very rapid
 • Dewatering permission will be obtained from EPA and approved dewatering related signboards will be kept on site.
 • Excavations shall conform to the lines, grades, side slopes and levels shown in the drawings or as directed by the engineer.
 • Excavation shall be taken in the presence of the engineer or competent supervising personnel.

2) Dust and noise related mitigation measures
 • Regular spray with water on stockpiles of fine aggregate, sand and construction material on site to prevent fugitive emissions.
 • Transport material to the site in a covered vehicle to avoid spillage of materials.
 • All roads need to be kept clear of dust and other extraneous materials dropped by material transport vehicles.
 • Loading and unloading to the site shall be done only during day time.
 • Avoid noisy operations at night.

3) Proposed safety practices during construction are:
 • Standard construction safety procedures shall be strictly followed such as Fencing, warnings, signs demarcating unsafe areas hard hat areas, shoes etc.
 • Safety nets should be used to cover buildings to prevent injury to public.
 • Safety paths should be identified for public movements.
• Provide first aid kits in case of an emergency and follow safety protocols during such event.
• Provide necessary safety appliances such as protective footwear, cloth gloves, safety goggles for welders, helmets, masks, etc. to the workers and staff.
• Safety signs shall be installed during construction.

4) Solid waste management

• Construction waste in allocated location are segregated and collected based on waste types
• Reuse material from construction waste where ever possible
• Daily transportation of unusable construction waste to the waste collection yard in Hulhumalé in an EPA licenced vehicle
• During the project activities and operational phases, all efforts should be made to prevent the intentional or accidental spill of oil, waste oil and hazardous materials release into the environment which could lead to further damage to the environment.
• Contractor should take steps to ensure that there is no dumping of oily waste from vehicles and equipment activities related to the project.
• Careful consideration should be given to the requirements for storage and appropriate disposal of waste oil.

9.7.1 Mitigation Cost Elements

The mitigation measures associated with significant costs, beyond those included in construction cost, and good mitigation practice, is identified below in Table 14 along with the major cost elements. Costs are based on the estimation of the magnitude activity.
Table 7: Significant impacts, mitigation measures and associated costs

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>IMPACTS</th>
<th>IMPACT PREDICTION</th>
<th>MITIGATION MESURES</th>
<th>Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Magnitude</td>
<td>Reversibility</td>
<td>Duration</td>
</tr>
<tr>
<td>1. Dewatering</td>
<td>Loss of benthic biota increased salinity of ground water</td>
<td>M</td>
<td>R</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Short period, obtain necessary approval from EPA, presence of a competent supervisor, Excavations shall conform drawings</td>
<td>Included in the project</td>
<td>Reduce desalination and potential flooding</td>
</tr>
<tr>
<td>2- Excavation concrete work transportation etc</td>
<td>Dust and noise</td>
<td>L</td>
<td>I</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Regular spray with water on stockpiles of fine aggregate</td>
<td>Transport material to the site in a covered vehicle to avoid spillage of materials, keep road clear at all times</td>
<td>Loading and unloading only daytime</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Safety nets to cover buildings to prevent injury to public. Safety paths should be identified for public movements, First aid kits, safety appliances and safety signs installed</td>
<td>Standard construction safety procedures fencing, warnings, signs demarcating unsafe areas hard hat areas, shoes etc.</td>
<td>Included in the project</td>
</tr>
<tr>
<td>Construction work</td>
<td>Workers and public Safety</td>
<td>M</td>
<td>R</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Safety nets to cover buildings to prevent injury to public. Safety paths should be identified for public movements, First aid kits, safety appliances and safety signs installed</td>
<td>Standard construction safety procedures fencing, warnings, signs demarcating unsafe areas hard hat areas, shoes etc.</td>
<td>Included in the project</td>
</tr>
<tr>
<td>Solid waste management</td>
<td>Construction waste</td>
<td>H</td>
<td>R</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Construction waste segregated and collected based on waste types Reuse material from construction waste Daily transportation of unusable construction waste to the</td>
<td>Included in the project</td>
<td>Reduce solid waste</td>
</tr>
</tbody>
</table>

Hulhumalè Lot A-10079 (A-33) six-storey building with a basement - EIA
<table>
<thead>
<tr>
<th>Waste Management Activity</th>
<th>Magnitude</th>
<th>Reversibility</th>
<th>Duration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide enclosed area to keep the waste bins protected from rain and sun. Ensure that household waste is properly collected and transported to Hulhumalé yard</td>
<td>L</td>
<td>R</td>
<td>M</td>
<td>400-500 MVR/month</td>
</tr>
</tbody>
</table>

Key
- **Magnitude**
 - H=High
 - M=Moderate
 - L=Low

- **Reversibility**
 - R=Reversible

- **Duration**
 - L= Long Term (Over 10 years)
 - M=Medium term (Over 5 years)
 - S=Short term (Below 5 years)
10 ALTERNATIVES

10.1 NO DEVELOPMENT OPTION

It is believed that minor environmental impacts may be generated from the proposed construction of six storey building with a basement in Hulhumalé Lot A10079. Although no impacts on the environment will be associated if the proposed development does not go ahead, the development will bring numerous socio-economic and contribute to improvement in living condition, minimization of congestion and improved aesthetics and modernization of the built environment. The project will increase the value of the land/project site, improve the living environment and provide economic opportunities and contribute directly and indirectly to health and wellbeing.

Given the range of benefits that the proposed development will bring the project has been considered important and “No-Development” Option has been considered not favourable for the proposed development and decided to go ahead with the proposed development.

Development can take place only within the limits of the environment and the society. Hence, the aim is to ensure that all project activities are undertaken without any adverse long term irreversible environmental damages that cannot be mitigated. Preferred alternatives discussed below has been selected based on the above broad development concept.

10.2 DEVELOPMENT OPTION

Having decided and followed the development option of the proposed project one has to consider the alternative options for the proposed six-storey building with a basement in Hulhumalé Lot A10079 that would have least environment impact. Following have been considered for the alternatives.

10.3 ALTERNATIVE POWER SOURCE

The present proposal involves use of power from the existing utility services in Hulhumalé. Operation of the will be additional increase in electricity demand but no need to increase the existing capacity of the diesel generators in Hulhumalé. It is recommended to consider solar energy to especially given the large empty terrace. Solar energy can supplement to the electricity use and bring substantial savings on energy expenses.

10.4 ALTERNATIVE FOUNDATION

A pile foundation can be considered as an alternative foundation method which will provide structural stability to the building. But generally Pile foundations are used for larger buildings with more than 10 floors. The building being small and of only six storeys pile foundation may not be ideal for this development. Therefore shallow raft foundation is the most suitable type of foundation for the proposed development.
11 MONITORING

Environmental monitoring is essential to ensure that mainly constructional impacts are known and eliminated in a timely manner. Dealing with impacts earlier would save money and also help planning and operationalize the process.

The parameters that are most relevant for monitoring the impacts that may arise from the proposed project are included in the monitoring plan. These include ground water (pH, dissolved oxygen, electrical conductivity, and faecal coliforms).

Monitoring by experienced civil engineers during foundation excavation is extremely important to ensure that on hand expertise to protect the foundations of the adjacent buildings and attend any emergencies in a timely manner. Also the dewater process should only be carried out in the presence of an experienced civil engineer to ensure that the process does not impact the foundations of adjacent buildings.

Waste management process during the construction and operational phase of the project should be monitored to ensure that the impacts due to waste generated is properly managed and also ensure that there is no leakage of hazardous material during use or storage prior to disposal.

The main objectives of the monitoring plan ar:
- To identify whether the predicted impacts are accurate and mitigation measures taken are effective
- To identify any unforeseen impacts so that appropriate mitigation measures can be taken at the earliest
- To identify and resolve any issues of social unrest at the earliest
- To eliminate or reduce environmental costs

<table>
<thead>
<tr>
<th>Type</th>
<th>Parameters</th>
<th>Locations</th>
<th>Frequency</th>
<th>Estimated cost (USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water quality monitoring / sampling and</td>
<td>Salinity</td>
<td>Take water samples from the neighbourhood</td>
<td>During construction</td>
<td>400/ set of tests</td>
</tr>
<tr>
<td>testing from a laboratory</td>
<td>Hydrocarbons</td>
<td>and the construction site</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sulphates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Coliform and faecal coliform</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring of foundation and structural</td>
<td>Structural elements,</td>
<td>Adjacent buildings to the Lot A10079</td>
<td>Daily during excavation and</td>
<td>Already included</td>
</tr>
<tr>
<td>integrity of adjacent buildings to the Lot</td>
<td>Keeping records of complaints by</td>
<td></td>
<td>dewatering periods by a civil</td>
<td></td>
</tr>
<tr>
<td>A10079.</td>
<td>nearby residents in the case of</td>
<td></td>
<td>engineers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>damages.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dewatering impacts</td>
<td>Start time and end time of</td>
<td>Monitoring of groundwater wells</td>
<td>Daily during excavation and</td>
<td>Already included</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>dewatering</td>
<td></td>
</tr>
</tbody>
</table>

Table 8: monitoring schedule
| dewatering and measuring water levels | of adjacent household periods by a civil engineer in the project |

11.1 MONITORING COSTS AND COMMITMENT

It is understood that costs of monitoring be borne by the proponent. It is also understood the mitigation measures would be accommodated in the contract costs. A commitment letter confirming compliance on mitigation measures is given in Annex 5.

11.2 MONITORING REPORT

A detailed environmental monitoring report is required to be compiled and submitted to the Environment Protection Agency annually, based on the data collected for monitoring the parameters included in the monitoring programme given in this report.

The report will include details of the site, strategy of data collection and analysis, quality control measures, sampling frequency and monitoring analysis and details of methodologies and protocols followed.

11.3 REPORTING SCHEDULE

During the construction phase monitoring report will be submitted every six months. And during the operational phase annual monitoring report will be submitted for two years.
12 CONCLUSIONS

The environmental impact assessment study for construction of six-storey building with a basement in Hulhumalé Lot A-10079 found that there are two main activities that would cause significant negative environmental impacts. Those, in order of significance, are:

1. Foundation excavation and dewatering.
2. Construction and operational waste

Of these a long term impact would be from constructional waste. The waste material generated during construction phase needs to be appropriately disposed if not aesthetic conditions of the surrounding environment will be degraded in addition to health risks, dust odour and smell nuisance to nearby residents is anticipated. Hazardous waste such as waste oil and lubricants if not disposed properly it will contaminate and pollute the groundwater. These impacts would be cumulative and can be managed through proper monitoring and addressing them in a timely manner. Based on the scale of the construction projects that is taking place in Maldives at the time of this writing, impacts associated with this project activity is insignificant.

Impact of dewatering on groundwater table will be short-term in nature, including loss of groundwater from the project boundary and vicinity. Major impact of dewatering would be increased salinity of groundwater within the vicinity areas for a short period of time. Considering the fact that most of the households nowadays are using piped water for daily household uses, there will be no direct impact to the households from increased salinity but the impact would be felt for the trees nearby the site.

The study has evaluated alternative options for the project activities and evaluated potential option for power generation and alternative foundation options. Even though there is no very significant impact from this project after the report has come-up with an extensive monitoring programme that will keep on monitoring environmental changes associated with the project and make necessary adjustment based on the findings of various measured environmental parameters suggested in the monitoring plan.

The study found that the proposed project is in line with key legal and policies maintained by the Ministry of Housing and Infrastructure and EPA including Environmental Protection and Preservation Act, EIA Regulations, Hulhumalé Planning Guidelines and Maldives National Building Code.

Therefore on the basis of this environmental impact assessment study and the impact mitigation measures proposed in the report will be duly implemented and recommendations are given due consideration, it is concluded that the benefits of the proposed construction of six storey building with a basement is Hulhumalé Plot A10079 will substantially outweigh its imposition on the environment.
13 REFERENCES

CDE Pvt. Ltd. (2012) EIA for proposed construction of 385 housing units Hulhumalé island, Kaafu Atoll, Maldives, by

CDE, (2015) EIA for the proposed development of a tertiary hospital at Hulhumalé’ by

CDE Pvt.Ltd, (2016)EIA for the development of N3-56 and N3-57 plot under the proposed 3,000 housing units project at Hulhumalé”, Kaafu Atoll.

Sandcays (2015) EIA, Multi-Storey Building at H. Point Villa Malé City, Maldives

Sandcays, (2015) EIA Multi-Storey Building at H. Blue Haven, Malé City, Maldives

WS Pvt.Ltd, (2014) EIA For the Development of a 10 Storey Building at Umaru Shopping Arcade, Malé, Maldives,

Zuhair M. and Shakir I., (2016) EIA Tower C of Amin Avenue, Hulhumalé, by
14 ANNEXES

Annex 1: EIA Terms of Reference (ToR) Approved by EPA
Annex 2: Design approval
Annex 3: Structural design schedule
Annex 4a-4e: Floor plans and building design schedules and details
Annex 5: Commitment letter from the proponent
Annex 6: Water sample analysis report
Annex 7: Scoping meeting attendance list
Terms of Reference for Environmental Impact Assessment for the proposed six storey building with a basement at Hulhumale Plot No 10079, Maldives

The following is the Terms of Reference (ToR) following the scoping meeting held on 7th September 2016 for undertaking the EIA of the proposed six storey building with a basement at Hulhumale Plot No 10079, Hulhumale, Maldives. The proponent of this project is Mrs. Mana Raafiu, NIC A034104.

While every attempt has been made to ensure that this TOR addresses all of the major issues associated with development proposal, they are not necessarily exhaustive. They should not be interpreted as excluding from consideration matters deemed to be significant but not incorporated in them, or matters currently unforeseen, that emerge as important or significant from environmental studies, or otherwise, during the course of preparation of the EIA report.

1. Introduction and rationale – Describe the purpose of the project and, if applicable, the background information of the project/activity. Objectives of the development activities should be specific and if possible quantified. Define the arrangements required for the environmental assessment including how work carried out under this contract is linked to other activities that are carried out or that is being carried out within the project boundary. Identify the donors and the institutions the consultant will be coordinating with and methodologies used.

2. Study area – Submit a minimum A3 size scaled plan with indications of all the proposed infrastructures. Specify the agreed boundaries of the study area for the environmental impact assessment highlighting the proposed development location and size.

3. Scope of work – Identify and number tasks of the project including preparation, construction and decommissioning phases.

 Task 1. Description of the proposed project – Provide a full description and justification of the relevant parts of the project, using maps at appropriate scales where necessary. The following should be provided (all inputs and outputs related to the proposed project shall be justified provide the following details):
 - Building size, No of Floors and type of development;
 - Land clearance methods in brief
 - Environmental monitoring during construction activities;
 - Brief methodology of laying the foundation;
 - Provision of electricity, water supply and sewerage services;
 - Construction/demolition waste disposal including excavated soil disposal
 - Waste management in operational phase
 - Dewatering, quantities methodologies etc.
 - Water proofing of basement area
 - Construction period with a tentative work plan

 Project management: include communication of construction details, progress, target dates, and duration of works, construction/operation/closure of labour camps, access to site, safety equipment and material storage, water supply waste management from construction, power and fuel supply for temporary site setup.

 Task 2. Description of the environment – Assemble, evaluate and present the environmental baseline study/data regarding the study area and timing of the project. Identify baseline data gaps and identify studies and the level of detail to be carried out by consultant. Consideration of likely monitoring requirements should be borne in mind during survey planning, so that data collected is suitable for use as a baseline. As such all baseline data must be presented in such a way that they will be usefully applied to future monitoring. The report should outline detailed methodology of data collection utilized.
Baseline data will be collected before construction and from at least two benchmarks.

All data must be collected as per the requirement of the EPA data collection guideline published on www.epa.gov.mv.

All survey locations shall be referenced with Geographic Positioning System (GPS) including water sampling points etc. Information should be divided into the categories shown below:

Physical and Biological
- Ambient noise level in the vicinity of the site
- Traffic flows (Size and direction) around the project site
- Vegetation cover in the project site
- Ground water quality for physical parameters

Structural environment
- State of the adjacent buildings including photographic records of existing damages as baseline reference;
- Road conditions in the surroundings
- Existing structures/uses of the proposed site

Socioeconomic environment
- Demographic data for Hulhumale population
- Brief description of social environment of Hulhumale in General and adjacent residential units in particular
- Traffic condition near the project site

Hazard vulnerability:
- Vulnerability of area to flooding.

Task 3. Legislative and regulatory considerations – Identify the pertinent legislation, regulations and standards, and environmental policies that are relevant and applicable to the proposed project, and identify the appropriate authority jurisdictions that will specifically apply to the project. Legal requirements:

Task 4. Potential impacts (environmental and socio-cultural) of proposed project, incl. all stages – The EIA report should identify all the impacts, direct and indirect, during and after construction, and evaluate the magnitude and significance of each. Particular attention shall be given to impacts associated with the following:

Impacts on the natural environment
- Loss of vegetation if any
- Impacts on terrestrial Fauna from earthworks
- Impacts on ground water table and quality as a result of dewatering;
- Impact on landscape integrity/scenery

Impact on the socioeconomic environment
- Impact on employment and income such as job opportunities in the construction and operational phase;
- Disturbance to resident and cultural facilities/activities
- Impact on transportation/traffic

Construction related hazards and risk
- Dust and emission
- Impacts due to foundation work
- Risk of accidents to workers
- General public health and safety issues

The methods used to identify the significance of the impacts shall be outlined. One or more of the following methods must be utilized in determining impacts; checklists, matrices, overlays, networks, expert systems and professional judgment. Justification must be provided to the selected methodologies. The report should outline the uncertainties in impact prediction and also outline all positive and negative/short and long-term impacts, Identify impacts that are cumulative and unavoidable.

Task 5. Alternatives to proposed project – Describe alternatives including the “no action option” should be presented. Determine the best practical environmental options. Alternatives examined for the proposed project that would achieve the same objective including the “no action alternative”. This should include but not limited to alternative design,
alternative equipment/machinery for construction, alternative disposal sites and alternative containment measures. All alternatives must be compared according to international standards and commonly accepted standards as much as possible. The comparison should yield the preferred alternative for implementation. Mitigation options should be specified for each component of the proposed project.

Task 6. Mitigation and management of negative impacts – Identify possible measures to prevent or reduce significant negative impacts to acceptable levels. These will include both environmental and socio-economic mitigation measures. Measures for both construction and operation phase shall be identified. Cost the mitigation measures, equipment and resources required to implement those measures. The confirmation of commitment of the developer to implement the proposed mitigation measures shall also be included. In cases where impacts are unavoidable arrangements to compensate for the environmental effect shall be given.

Task 7. Development of monitoring plan (see appendix) – Identify the critical issues requiring monitoring to ensure compliance to mitigation measures and present impact management and monitoring plan during and after completion of the proposed project. Reporting requirement shall be outlined. The baseline study described in task 2 of section 2 of this document is required for data comparison. Detail of the monitoring program including the physical and biological parameters for monitoring, cost commitment from the proponent to conduct monitoring in the form of a commitment letter, detailed reporting scheduling, costs and methods of undertaking the monitoring program must be provided.

Task 8. Stakeholder consultation – Identify appropriate mechanisms for providing information on the development proposal and its progress to all stakeholders, government authorities, engineers/designers, HPA and MWSC. The EIA report should include a list of people/groups consulted, their contact details and summary of the major outcomes.

Presentation – The environmental impact assessment report, to be presented in digital format, will be concise and focus on significant environmental issues. It will contain the findings, conclusions and recommended actions supported by summaries of the data collected and citations for any references used in interpreting those data. The environmental assessment report will be organized according to, but not necessarily limited by, the outline given in the Environmental Impact Assessment Regulations, 2012

Timeframe for submitting the EIA report – The developer must submit the completed EIA report within 6 months from the date of this Term of Reference.
Annex 2: Design approval certificate

HC41DS/69/621

Date: 2016/08

Account No: 10079

Housing Development Corporation

HDC(161)-HR/2016/103
THE CERTIFICATE

For structural design compliance - category A1

1. I Abdulla Rameez being a registered accredited professional, hereby certifies that I have in accordance with this National Building Professionals Accreditation Regulation set out by the Registrar, have carried out an evaluation, analysis and review of the plans of the building works attached and to the best of my knowledge and belief the plans do not show any inadequacy in the key structural elements of the building to be erected or by the works carried out in accordance with those plans.

2. In arriving at my conclusion, I confirm that I have reviewed and evaluated the design in accordance with the building regulations using the following criteria:-
 a. codes of practice adopted in the design;
 b. including wind load, construction load or dynamic load, if applicable) checked;
 c. standards and specifications of structural elements;
 d. structural design concept and identification of the key structural elements;
 e. structural analysis and design of all key structural elements including foundation systems;
 f. stability of structural frame;
 g. structural detailing;
 h. others specify ...

Plot Name/No: Hulhumale lot 10079 Date: 17th June 2016
Type of Building: Residential building
Plot Owner’s Name: Mrs. Maana Rafiu

A.P. Engineer’s Signature:

FOR OFFICIAL USE ONLY

Building Permit No.: HPD(161).19/16/102

Local Authority’s Stamp:
1. Beam Properties:

Beam Type:
- $h = 400 \text{ mm}$
- $b = 130 \text{ mm}$
- $L = 1.60 \text{ m}$
- $A_{\text{Supported}} = 1.00 \text{ m}^2$

2. Material Properties:

- $f_{\text{cu}} = 25 \text{ N/mm}^2$
- $f_y = 415 \text{ N/mm}^2$
- $f_{\text{yy}} = 250 \text{ N/mm}^2$
- $g_c = 1.5$
- $g_s = 1.05$

3. Beam loading

<table>
<thead>
<tr>
<th>Point Load</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>KN</td>
<td>0.00 m</td>
<td>0.00 m</td>
</tr>
</tbody>
</table>

Ultimate load, $n = 1.4G_k + 1.6Q_k$

Ultimate load, $n' = 16.27 \text{ kN/m}$

4. Beam Design

Critical Positive Moment @ Mid-Span

$M = 3.79 \text{ kNm}$

$K = 0.009 \quad < K' = 0.156 \quad < K', \text{ Section is Singly Reinforced!}$

- $z = 335 \text{ mm}$
- As req $= 29 \text{ mm}$
- Bar No @ BOTTOM = 2
 - (B1) 2 T12 226
 - (B2) 0 T 0
 - (B3) 0 T 0
- As pro $= 226 \text{ mm}^2$
- As min $= 68 \text{ mm}^2$ OK!
- As req $= 29 \text{ mm}^2$
- As Pro $= 226 \text{ mm}^2$ OK!

Maximum Negative Moment @Support

$M = 4.39 \text{ kNm}$

$K = 0.011 \quad < K' = 0.156 \quad < K', \text{ Section is Singly Reinforced!}$

- $z = 335.4 \text{ mm}$
- As req $= 33 \text{ mm}$
- Bar No @ TOP = 2
 - (T1) 2 T12 226
 - (T2) 0 T 0
 - (T3) 0 T 0
- As pro $= 226 \text{ mm}^2$
- As min $= 68 \text{ mm}^2$ OK!
- As req $= 33 \text{ mm}^2$
- As Pro $= 226 \text{ mm}^2$ OK!
5. Beam shear

Maximum shear Force: $V^* = 15.0\text{ kN}$

<table>
<thead>
<tr>
<th>Main Steel</th>
<th>Link</th>
<th>Legs</th>
<th>Side cover</th>
<th>Shear V</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 T12</td>
<td>R6</td>
<td>2</td>
<td>35</td>
<td>15.0</td>
</tr>
</tbody>
</table>

As	226 mm^2	$% = 0.493 < 3\text{ OK !}$
v	0.326 N/mm^2	$400/d = 1.133 > 1\text{ OK !}$
v_e	0.515 N/mm^2	$(v_c + 0.4) = 0.915 > v$ DesigenLinks required!
$(v - v_c)b$	52.00 N/mm	$v < v_{max}$ Beam Dimensions OK !
V_{max}	4.00 N/mm^2	
A_{sv}	56.55 mm^2	
S_{v}	258.28 mm	

Provide! 1 NO R Ø6mm @ 250 c/c Link spacing is OK !

6. Beam Deflection

$M/bd^2 = 0.23$
$f_v = 35.04$
$MFT = 2.00 < 2\text{ OK !}$

Basic (Span/d) ratio = 20
Allow (Span/d) ratio =
Actual (Span/d) ratio = 4.53 OK !
1. Beam Properties:

Beam Type:
- $h = 400$ mm
- $b = 200$ mm
- $L = 3.78$ m
- $A_{supported} = 3.57$ m2

2. Material Properties:

- $f_{cu} = 25$ N/mm2
- $f_y = 415$ N/mm2
- $f_{yy} = 250$ N/mm2
- $g_c = 1.5$
- $g_s = 1.05$

3. Beam Loading

<table>
<thead>
<tr>
<th>Load</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dead Load G_k</td>
<td>46.80 kN</td>
</tr>
<tr>
<td>Live Load Q_k</td>
<td>1.5 kN/m2</td>
</tr>
<tr>
<td>Point Load P</td>
<td>0.00 KN 0.00 m</td>
</tr>
<tr>
<td>Ultimate load n</td>
<td>$1.4G_k + 1.6Q_k$</td>
</tr>
<tr>
<td>Ultimate load n'</td>
<td>19.60 kN/m</td>
</tr>
</tbody>
</table>

4. Beam Design

Critical Positive Moment @ Mid-Span

- $K = 0.041$
- $< K' = 0.156$
- Section is Singly Reinforced!

```
K = 0.041  < K' =  0.156  < K', Section is Singly Reinforced!

Bar No @ BOTTOM = 2
(B1) 2 T12 226
(B2) 0 T 0
(B3) 0 T 0
As req = 193 mm$^2$
As pro = 226 mm$^2$
As min = 104 mm$^2$
As req = 193 mm$^2$
As pro = 226 mm$^2$

MID - SPAN
```

Maximum Negative Moment @Support

- $K = 0.047$
- $< K' = 0.156$
- Section is Singly Reinforced!

```
K = 0.047  < K' =  0.156  < K', Section is Singly Reinforced!

Bar No @ TOP = 2
(T1) 2 T12 226
(T2) 0 T 0
(T3) 0 T 0
As req = 224 mm$^2$
As pro = 226 mm$^2$
As min = 104 mm$^2$
As req = 224 mm$^2$
As pro = 226 mm$^2$

SUPPORT
```
5. Beam shear

Maximum shear Force: $V^* = 42.6$ kN

<table>
<thead>
<tr>
<th>Main Steel</th>
<th>Link</th>
<th>Legs</th>
<th>Side cover</th>
<th>Shear V</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>T12</td>
<td>RG</td>
<td>2</td>
<td>35</td>
</tr>
</tbody>
</table>

As = 226 mm²
$v = 0.603$ N/mm²
$v_c = 0.446$ N/mm²
$(v - v_c)mv = 0.320 < 3 OK$

$v = 400kN = 1.133 > 1 OK$

$(v_c + 0.4) = 0.846 > v$ Design Links required

$V_{max} = 80.00$ N/mm²

$Asv = 56.55$ mm²
$Sv = 167.88$ mm

Provide 1 NO R Ø 6mm @ 150 c/c

Link spacing is OK

6. Beam Deflection

$M/bd^2 = 1.02$
$t_b = 235.53$

MFT = 1.52 $< 2 OK$

Basic (Span/d) ratio = 26

Allow (Span/d) ratio = 39.42

Actual (Span/d) ratio = 10.71 OK

Table:3.7

Cl:3.4.5.3

Table:3.9
1. Beam Properties:

Beam Type: T
- h = 450 mm
- b = 200 mm
- L = 6.03 m
- A Supported = 7.30 m²

2. Material Properties:

- fcu = 25N/mm²
- fy = 415 N/mm²
- fyy = 250 N/mm²
- gc = 1.5
- gs = 1.05

3. Beam loading

Dead load 'Gk = 85.75 kN
Live load 'Qk = 2 kN/m²

<table>
<thead>
<tr>
<th>Point Load</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>KN</td>
<td>0.00 m</td>
<td>0.00 m</td>
</tr>
</tbody>
</table>

Ultimate load, n = 1.4Gk + 1.6Qk
Ultimate load 'n = 24.11 kN/m

4. Beam Design

Critical Positive Moment @ Mid-Span

| K = 0.176 | < K' = 0.156 | >K' compression steel required! |

Bar No @ BOTTOM = 4

(B1) 2	T20	628
(B2) 2	T20	628
(B3) 0	T	0

As pro = 1257 mm²
As min = 117 mm²
As req = 1084 mm²
As Pro = 1257 mm²

OK!

| 2T12 | 1 R 6 @150 c/c |
| 2T20 (4.5m) | 2T20 |

MID - SPAN
6. Beam shear

Maximum shear Force: V^- = 83.6 kN

<table>
<thead>
<tr>
<th>Main Steel</th>
<th>Link</th>
<th>Legs</th>
<th>Side cover</th>
<th>Shear V</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>T12</td>
<td>2</td>
<td>35</td>
<td>83.6</td>
</tr>
<tr>
<td>0</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no</td>
<td>mm Ø</td>
<td>mm Ø</td>
<td>1NOS</td>
<td>mm</td>
</tr>
</tbody>
</table>

- As = 1257 mm²
- v = 1.108 N/mm²
- vc = 0.780 N/mm²
- (v - v₀)bv = 80.00 N/mm
- V max = 4.00 N/mm²
- Asv = 56.55 mm²
- Sv = 167.88 mm

Provide 1 NO R Ø 6mm @ 150 c/c

Cl: 3.4.5.3
Table: 3.7

- Link spacing is OK!

6. Beam Deflection

M/bd² =	4.40
f₀ =	238.66
MFT =	1.03

- Basic (Span/d) ratio = 20
- Allow (Span/d) ratio = 20.58
- Actual (Span/d) ratio = 15.99

Table: 3.9

< 2 OK!
1. Beam Properties:

Beam Type: R

- \(h = 450 \text{ mm} \)
- \(b = 225 \text{ mm} \)
- \(L = 6.05 \text{ m} \)
- \(A \) Supported = 16.00 \text{ m}^2

2. Material Properties:

- \(f_{cu} = 25 \text{N/mm}^2 \)
- \(f_{y} = 640 \text{ N/mm}^2 \)
- \(f_{yy} = 250 \text{ N/mm}^2 \)
- \(y_m = 1.5 \)
- \(y_m = 1.05 \)

3. Beam loading

- Dead load \(G_k = 143.46 \text{kN} \)
- Live load \(Q_k = 2 \text{kN/m}^2 \)
- Point Load: a b

- \(25 \text{kN} \)
- \(0.92 \text{ m} \)
- \(5.13 \text{ m} \)

4. Beam Design

Critical Positive Moment @ Support

- \(K = 0.259 \)
- \(< K = 0.156 \)
- \(>K\) compression steel required!

Compression Steel (As') req = 470.53 \text{mm}^2

Tension steel (As) req = 1726.6 \text{mm}^2

Bar No @ TOP = 2

Bar No @ BOTTOM = 4

5. Beam shear

Maximum shear Force: \(V = 149.5 \text{kN} \)

6. Beam Deflection

- M/d = 140.14
- \(L = 100 \text{A's/d} \)
- MFC = 1.69
- \(M/T = 0.93 \)
- Basic (Span/d) ratio = 20
- Allow (Span/d) ratio = 25.31
- Actual (Span/d) ratio = 16.05
1. Beam Properties:

<table>
<thead>
<tr>
<th>Beam Type:</th>
<th>ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h = 550 \text{ mm})</td>
<td>(b = 250 \text{ mm})</td>
</tr>
<tr>
<td>(L = 6.05 \text{ m})</td>
<td>(d = 477 \text{ mm})</td>
</tr>
<tr>
<td>(A_{supported} = 13.50 \text{ m}^2)</td>
<td>(A_{tot} = 27.00 \text{ m}^2)</td>
</tr>
</tbody>
</table>

2. Material Properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{cu} = 25 \text{ N/mm}^2)</td>
<td>(f_y = 640 \text{ N/mm}^2)</td>
</tr>
<tr>
<td>(f_{yy} = 250 \text{ N/mm}^2)</td>
<td>(\gamma_m = 1.5)</td>
</tr>
</tbody>
</table>

3. Beam loading

<table>
<thead>
<tr>
<th>Point Load</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dead Load</td>
<td>25 kN</td>
<td>0.02 m</td>
</tr>
</tbody>
</table>

4. Beam Design

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.4.4</td>
<td>Compression steel required</td>
</tr>
</tbody>
</table>

5. Beam shear

<table>
<thead>
<tr>
<th>Main Steel</th>
<th>Link</th>
<th>Legs</th>
<th>Side cover</th>
<th>Shear V</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>T20</td>
<td>R6</td>
<td>35</td>
<td>235.3</td>
</tr>
</tbody>
</table>

6. Beam Deflection

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mbd</td>
<td>5.93</td>
</tr>
<tr>
<td>f_t</td>
<td>93.62</td>
</tr>
<tr>
<td>1000As/bd</td>
<td>1.92</td>
</tr>
<tr>
<td>MFC</td>
<td>1.39</td>
</tr>
<tr>
<td>MFT</td>
<td>1.02</td>
</tr>
</tbody>
</table>

LICENCE NO: BDR2016038E
Note: Rules in Clause 3.5.3.5 BS 8110 Part 1 should be applied.

1. Slab Geometry

<table>
<thead>
<tr>
<th>Slab Geometry</th>
<th>(\frac{L_y}{L_x} = 1.60 < 2) Two way slab, So O.K.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width of slab</td>
<td>(L_x = 3780 \text{ mm})</td>
</tr>
<tr>
<td>Length of slab</td>
<td>(L_y = 6052 \text{ mm})</td>
</tr>
<tr>
<td>Slab thickness</td>
<td>(h = 135 \text{ mm})</td>
</tr>
<tr>
<td>Cover to bar</td>
<td>(c = 30 \text{ mm})</td>
</tr>
</tbody>
</table>

2. Slab Loading

<table>
<thead>
<tr>
<th>Load Category</th>
<th>Calculation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-weight</td>
<td></td>
<td>3.24 kN/m²</td>
</tr>
<tr>
<td>Superimposed D.L.</td>
<td></td>
<td>1.10 kN/m²</td>
</tr>
<tr>
<td>Dead load</td>
<td></td>
<td>4.34 kN/m²</td>
</tr>
<tr>
<td>Live load</td>
<td></td>
<td>2.00 kN/m²</td>
</tr>
<tr>
<td>Ultimate load</td>
<td></td>
<td>9.28 kN/m²</td>
</tr>
</tbody>
</table>

Superimposed Dead Load

- Finishes: 0.5 kN/m²
- Partition: 0.2 kN/m²
- M&E Services: 0.2 kN/m²
- Ceiling: 0.2 kN/m²

Ultimate load, \(n = 1.4G_k + 1.6Q_k \)

3. Slab Material

- Concrete characteristic strength: \(f_{cu} = 25 \text{ N/mm}^2 \)
- Steel characteristic strength: \(f_y = 460 \text{ N/mm}^2 \)

4. Slab Edges Continuity

(1 continuous / 0 discontinuous)

<table>
<thead>
<tr>
<th>Edge</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge 1</td>
<td>0</td>
</tr>
<tr>
<td>Edge 2</td>
<td>0</td>
</tr>
<tr>
<td>Edge 3</td>
<td>1</td>
</tr>
<tr>
<td>Edge 4</td>
<td>0</td>
</tr>
</tbody>
</table>

5. Ultimate Moment

- \(\beta_x = \) moment coefficient for sagging moment in direction of \(L_x \)
- \(\beta_y = \) moment coefficient for sagging moment in direction of \(L_y \)
- \(\beta_1 \) & \(\beta_2 \) = moment coefficient for hogging moment over edge 1 & 2
- \(\beta_3 \) & \(\beta_4 \) = moment coefficient for hogging moment over edge 3 & 4

<table>
<thead>
<tr>
<th>Moment in x direction</th>
<th>(n = 3)</th>
<th>(\gamma = 0.421)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_x = 0.066)</td>
<td>(M_x = 8.74 \text{ kNm/m width})</td>
<td></td>
</tr>
<tr>
<td>(\beta_3 = 0.088)</td>
<td>(M_3 = 11.56 \text{ kNm/m width})</td>
<td></td>
</tr>
<tr>
<td>(\beta_4 = 0.000)</td>
<td>(M_4 = 0.00 \text{ kNm/m width})</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Moment in y direction</th>
<th>(\beta_y = 0.044)</th>
<th>(M_y = 5.77 \text{ kNm/m width})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_1 = 0.000)</td>
<td>(M_1 = 0.00 \text{ kNm/m width})</td>
<td></td>
</tr>
<tr>
<td>(\beta_2 = 0.000)</td>
<td>(M_2 = 0.00 \text{ kNm/m width})</td>
<td></td>
</tr>
</tbody>
</table>
6. Steel reinforcement

Reinforcement in x direction

<table>
<thead>
<tr>
<th>Reinf.</th>
<th>Spacing</th>
<th>$A_{x \text{ prov}}$</th>
<th>$A_{x \text{ req}}$</th>
<th>u_x</th>
<th>ϕ_x</th>
<th>Ultimate moment (kNm/m width)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom bar</td>
<td>10 @ 150</td>
<td>524</td>
<td>230</td>
<td>100</td>
<td>95.00</td>
<td>Design Resist. Extra Status</td>
</tr>
<tr>
<td>Top bar edge</td>
<td>10 @ 150</td>
<td>524</td>
<td>30%</td>
<td>100</td>
<td>94.52</td>
<td>8.74 19.91 11.17 O.K !</td>
</tr>
<tr>
<td>Top bar edge</td>
<td>10 @ 150</td>
<td>524</td>
<td>176</td>
<td>100</td>
<td>95.00</td>
<td>0.00 19.91 19.91 O.K !</td>
</tr>
</tbody>
</table>

Reinforcement in y direction

<table>
<thead>
<tr>
<th>Reinf.</th>
<th>Spacing</th>
<th>$A_{y \text{ prov}}$</th>
<th>$A_{y \text{ req}}$</th>
<th>u_y</th>
<th>ϕ_y</th>
<th>Ultimate moment (kNm/m width)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom bar</td>
<td>10 @ 150</td>
<td>524</td>
<td>173</td>
<td>90</td>
<td>85.50</td>
<td>Design Resist. Extra Status</td>
</tr>
<tr>
<td>Top bar edge</td>
<td>10 @ 150</td>
<td>524</td>
<td>173</td>
<td>90</td>
<td>85.50</td>
<td>5.77 17.92 12.15 O.K !</td>
</tr>
<tr>
<td>Top bar edge</td>
<td>10 @ 150</td>
<td>524</td>
<td>173</td>
<td>90</td>
<td>85.50</td>
<td>0.00 17.92 17.92 O.K !</td>
</tr>
</tbody>
</table>

Required minimum distribution steel = 0.13%bh
Bar provided, Reinf. 10 @ 300 $A_{x \text{ prov}}$ = 262 mm²

Min. steel to control thermal/shrinkage = 0.25%bh
Bar provided, Reinf. 10 @ 300 $A_{y \text{ prov}}$ = 262 mm²

7. Ultimate shear

Shear in x direction

<table>
<thead>
<tr>
<th>V</th>
<th>V_c</th>
<th>Ultimate shear (kNm width)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/mm²</td>
<td>N/mm²</td>
<td>Design Resist. Extra Status</td>
</tr>
</tbody>
</table>
| Edge 3 : | 0.21 | 0.72 | v < V_c, O.K!
| Edge 4 : | 0.14 | 0.72 | v < V_c, O.K!

8. Deflection (Cl. 3.4.6)

$$M_x b/d_x^2 = 0.87$$

$$A_{x \text{ req}} = 230 \text{ mm}^2$$

$$A_{x \text{ prov}} = 524 \text{ mm}^2$$

$$f_s = (5/8)*f'\times(A_{x \text{ req}}/A_{x \text{ prov}}) = 126.16 \text{ N/mm}^2$$

$$\text{Tension reinforcement modification factor} = 0.55 + \frac{(477 - f_s)}{(120(0.9 + M/bd^4))} \leq 2 = 2.00$$

$$\text{Basic } L/d_x = \frac{26}{b}$$

$$\text{Allowable } L/d_x = 26 \times 2.00 = 52.00$$

$$\text{Actual } L/d_x = \frac{3780}{100.00} = 37.80 \Rightarrow \text{Deflection O.K} !$$

9. Cracking (Cl. 3.12.11.2.7)

$$3d_x = 3 \times 100 = 300 \text{ mm or maximum 750 mm}$$

$$\text{Spacing between bars} = 150 - 10 = 140 \text{ mm}$$

$$\% 100A_{v bd} = 0.52 > 0.3\%, \text{So either limit the bar spacing to 160 mm or perform actual crack-width check} !$$

Since slab thickness <= 200mm, no further checks required.
2. Material Properties:

- $f_{cu} = 25 N/mm^2$
- $f_y = 415 N/mm^2$
- $f_{yy} = 250 N/mm^2$
- $g_c = 1.5$
- $g_s = 1.05$

3. Beam loading

 - Ultimate Load $= 6903.00$ KN
 - Service load $= 4855.90$ KN

4. Strip Dimensions

 - Assumed width $= 1.80$ m
 - Assumed length $= 22.39$ m
 - Strip thickness $= 350$ mm
 - Bearing capacity $= 150$ KN
 - Area Required $= 32.37$ m2
 - Required width $= 1.57$ m
 - New Area Required $= 35.10$ m2

5. Strip Beam dimensions

 - $h =$ beam $= 600$ mm
 - $b =$ beam $= 450$ mm
 - Total length of beam $= 22.39$ m
 - $d =$ 730 mm
 - Weight of Strip and Beam $= 409.70$ KN
 - Design upward pressure $= 196.56$ KN/m2

6. Foundation Beam Design

 - Udl on Strip beam $= 314.50$ KN/m
 - $L =$ 3.77 m
 - Cover $= 80$ mm
 - Design Moment $= 446.76$ KN/m
 - $d =$ 698 mm

DESIGN MOMENT

$K = 0.082$ < $K' = 0.156$ < K', Section is Singly Reinforced

- As req $= 1805$ mm2
- Bar No @ BOTTOM $= 6$
- NO of Layer $= 3$

 - (T1) 4 T20 1257
 - (T2) 4 T16 804
 - (T3) 2 T12 226

 - As pro $= 2287$ mm2
 - As min $= 468$ mm2
 - As req $= 1805$ mm2
 - As Pro $= 2287$ mm2

Maximum Negative Moment @Support

$K = 0.082$ < $K' = 0.156$ < K', Section is Singly Reinforced

- As req $= 1805$ mm2
- Bar No @ TOP $= 6$
- NO of Layer $= 3$

 - (B1) 4 T20 1257
 - (B2) 4 T16 804
 - (B3) 2 T12 226

 - As pro $= 2287$ mm2
 - As min $= 468$ mm2
 - As req $= 1805$ mm2
 - As Pro $= 2287$ mm2
7. Beam shear

Maximum shear Force: \(V^* = 474.14 \text{kN} \)

<table>
<thead>
<tr>
<th>Main Steel</th>
<th>Link</th>
<th>Legs</th>
<th>Side cover</th>
<th>Shear V</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 T20</td>
<td>R10</td>
<td>4</td>
<td>60</td>
<td>474.1</td>
</tr>
<tr>
<td>4 T16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
As = 2287 \text{mm}^2 \quad \% = 0.728 < 3 \text{ OK!}
\]

\[
v = 1.510 \text{N/mm}^2 \quad 400/d = 1.000 \quad > 1 \text{ OK!}
\]

\[
v_c = 0.569 \text{N/mm}^2 \quad (v_c + 0.4) = 0.969 > v \text{ Design Links required!}
\]

\[
(V - v_c)b = 423.43 \text{N/mm} \\
V_{\text{max}} = 4.00 \text{N/mm}^2
\]

\[
\text{Provide ! 2 NO R Ø 10mm @ 175 c/c Link spacing is OK!}
\]

8. Beam Deflection

\[
\frac{M}{bd^2} = 2.04 \\
f_\alpha = 218.39 \\
M/F = 1.28 \quad < 2 \text{ OK!}
\]

Basic (Span/d) ratio = 20

Allow (Span/d) ratio = 25.67

Actual (Span/d) ratio = 5.40 \text{ OK!}

9. Strip Design

Cantilever Length = 1.15 m

Assumed bar Diameter = T16

Bent up Bar Diameter = T16

Effective depth of strip = 282 mm

Design Moment = 129.98 KN/m

\[
K = 0.086 \quad < K' = 0.156 \quad < K' \text{, Section is Singly Reinforced!}
\]

\[
z = 290 \text{mm} \\
As_{\text{req}} = 1269 \text{mm}^2
\]

As Provided \(T16 @ 150 \quad 1340 (\text{mm}^2/\text{m}) \text{ OK!} \)

10. Shear resistance at a section

Maximum shear Force: \(V^* = 170.62 \text{kN} \)

Design shear stress, \((v) = 0.61 \text{N/mm}^2 \quad v <= 0.8 \text{ sqrt]\iota \nu or 50/mm}^2 \text{ OK!}

\[
(100xAs)/(bxd) = 0.48 \quad < 3 \text{ OK!}
\]

\[
400/d = 1.42 \quad > 1 \text{ OK!}
\]

Ultimate shear stress, \(v_c = 0.54 \)
Annex 4b: Elevator plan

NOTE:
- ALL MEASUREMENTS TO BE CHECKED ON SITE BEFORE FABRICATION.
- PROVIDE RC LINTEL ABOVE DOOR NOS.
- ALL DOORS AND WINDOW UNITS ARE NOT FIXED TO BEAMS.
- ALL WOODEN DOORS AND DOOR PANEL SHOULD BE PUDDY SMOOTHED AND FINISHED.

KEY
- R: Finished Floor Lvl.
- FG: Fixed Glass
- G: Glass
- T: Timber
- L: Louvre
- D: House, Safety
- DOORS AND WINDOW UNITS NOT FIXED TO BEAMS.

Diagram Notes
- ALL MEASUREMENTS TO BE CHECKED ON SITE BEFORE FABRICATION.
- PROVIDE RC LINTEL ABOVE DOOR NOS.
- ALL WOODEN DOORS AND DOOR PANEL SHOULD BE PUDDY SMOOTHED AND FINISHED.

Diagram Details
- Dimensions and measurements are to be checked on site before fabrication.
- ALL WOODEN DOORS AND DOOR PANEL SHOULD BE PUDDY SMOOTHED AND FINISHED.
- PROVIDE RC LINTEL ABOVE DOOR NOS.
- ALL MEASUREMENTS TO BE CHECKED ON SITE BEFORE FABRICATION.
- PROVIDE RC LINTEL ABOVE DOOR NOS.
- ALL WOODEN DOORS AND DOOR PANEL SHOULD BE PUDDY SMOOTHED AND FINISHED.
Contractors shall work from figured dimensions only.

CONTRACTORS' NOTES:

NOTE: All measurements to be checked on site before fabrication.

- Provide RC lintel above all door and window units not fixed to beams.
- All wooden doors and glass panels should be fully smoothed and finished.

- Provide RC lintel above all door and window units not fixed to beams.
- All wooden doors and glass panels should be fully smoothed and finished.

KEY:

- F: FINISHED FLOOR LVL
- RF: Rough Glass
- G: Glass
- T: Timber
- L: Louvered
- Ed: Edging, Sizing

- Contractors shall work from figured dimensions only.
- Discrepancies must be reported immediately to the architects.

PLAN

ELEVATION Y

ELEVATION X
Discrepancies must be reported immediately to the architects. Contractors shall work from figured dimensions only. Discrepancies must be reported immediately to the architects.
contractors shall work from figured dimensions only. Discrepancies must be reported immediately to the architects.

KEY

FG: FIXED GLASS
G: GLASS
L: LOUVERED
T: TIMBER
EQ: EQUAL SPACING

FINISHED FLOOR LEVEL

SLIDING DOOR 2

DETAILED DESIGN

REPUBLIC OF MALDIVES

AOK Holdings

 ministry of housing & infrastructure

registration no: BPR2015022A1

AL AMMAR HOLDINGS LTD.

contractors shall work from figured dimensions only. Discrepancies must be reported immediately to the architects.

Registration No: BPR2015022A1

The Ministry of Housing & Infrastructure
BALCONY SECTION

GLASS RAILING DETAIL

5.5 FIXING TO MANUFACTURES DETAIL
12 mm TEMPERED GLAZING PANEL

50mm X 100mm TIMBER HANDRAIL

3mm X 100mm MET ALUMINIUM STEEL WITH BLACK PAINT

5mm X 10mm MET STEEL WITH BLACK PAINT

APPROVED
Housing Development Corporation Ltd.

BALCONY ELEVATION

RAILING DETAIL

APPROVED
Housing Development Corporation Ltd.

BALCONY SECTION

SCA: 1:20

SCALE 1:20

RAILING DETAIL

SCALE 1:20
PROJECT: HULHUMALE' LOT 10079
ON SOUTH RESIDENTIAL BUILDING

INVENTORY CODE: 10079-AR-10

ITALIC: CONCEPT OR DESIGN ON THIS DRAWING IS PROPOSED

GENERAL NOTE:

1. 100X150mm CONCRETE PAVING SHALL BE CASTED AT THE BOTTOM OF ALL EXTERIOR WALKWAYS.
2. 150X600mm RC 300x300mm BEAM SHALL BE CASTED AT THE CENTRE OF ALL EXTERIOR WALLS.
3. RC BEAMS ARE TO BE PROVIDED ON TOP OF ALL EXTERIOR WALLS.
4. FRP GRATING SOLUTIONS ARE TO BE PROPOSED BY THE CONTRACTOR AND APPROVED BY THE ENGINEER.
5. STEPS OF THE STAIRCASE SHALL BE FINISHED WITH HOMOGENEOUS TILES UP TO MID HEIGHT OF THE WALLS, AFTER SCREEDING.
6. ALL TOILETS SHOWN ON THE PLAN, INCLUDING BALKY FLOORS, SHOULD BE SPECIFIED BY THE CONTRACTOR AND APPROVED BY THE ENGINEER. ALL THE TILES SHOULD BE APPROVED IN ALL THE BALKY FLOORS.
7. DOORS AND WINDOWS FINISHED WITH 600X600mm HOMOGENEOUS TILES, APPROVED BY THE CONTRACTOR AND CONSTRUCTION SUPERVISOR.
8. TOILET SHO'WERS 25MM LOWER THAN THE FLOOR LEVEL.
9. CEMENT SHOULD BE USED FOR ALL THE TILING.
10. BALCONY FLOORS UP TO 150X300mm HIGH FOR PROTECTION.

INTERTIAL FINISHES LEGEND

A - APPROVED
B - BE FULL BLOCK
C - BE FULLLY MASONED
D - BE FULLY CASTED, CASTED AT THE BOTTOM OF ALL EXTERIOR WALKWAYS.
E - CONCEPT OR DESIGN ON THIS DRAWING IS PROPOSED

MINISTRY OF HOUSING & INFRASTRUCTURE

APPROVED

Housing Development Corporation Ltd.

MINISTRY OF HOUSING & INFRASTRUCTURE

APPROVED

Housing Development Corporation Ltd.

NATIONAL ARCHIVED

20 MAY 2016

MINISTRY OF HOUSING & INFRASTRUCTURE
INTERNAL FINISHES LEGEND

- ETB - EXPOSED AGGREGATE (PICKLING)
- ETP - EXPOSED AGGREGATE (POLISHING)
- B - BOXED (PICKLING)
- WP - WATERPROOF (SINTOOLIC)
- WPB - WATERPROOF (BRCOILIC)

GENERAL NOTE:
1. ALL CONCRETE FLOORS SHALL BE FINISHED WITH 600X600mm HOMOGENOUS TILES AS APPROVED BY THE ARCHITECT.
2. ALL TOILETS, SHOWERS, DUNKER ROOMS AND THEIR RESPECTIVE LOBBIES TO HAVE NON-SLIP CERAMIC FLOOR TILES.
3. TOILETS SHOWER 25MM LOWER THAN THE FLOOR OF RESPECTIVE FLOORS, ALL THE TILES SHOULD BE SPECIFIED BY THE CONTRACTOR AND APPROVED BY THE CLIENT.
4. STEPS OF THE STAIRCASE SHALL BE FINISHED WITH HOMOGENOUS TILES & SKIRTING APPROVED BY THE ARCHITECT.
5. ALL FINISH MATERIALS SHALL BE APPROVED BY THE ARCHITECT.

MINISTRY OF HOUSING & INFRASTRUCTURE

Structural Design

Structural Designer: Abdulla Rameez

Internal Finishes Code:

<table>
<thead>
<tr>
<th>Surface Type</th>
<th>User Type</th>
<th>Fire Rated</th>
<th>Wall Type</th>
<th>Ceiling Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARKING</td>
<td>P1</td>
<td>1</td>
<td>P1</td>
<td>1</td>
</tr>
<tr>
<td>TOILET</td>
<td>P2</td>
<td>1</td>
<td>P2</td>
<td>1</td>
</tr>
<tr>
<td>C1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All the work should be carried out according to the details.
HULHUMALE' LOT 10079
05 STOREY RESIDENTIAL BUILDING
HULHU MALE', K ATOLL
REPUBUC OF MALDIVES

DECK LEVEL
+16200MM (S.F.L)

FIFTH FLOOR LEVEL
+17300MM (S.F.L)

FOURTH FLOOR LEVEL
+14206MM (S.F.L)

THIRD FLOOR LEVEL
+11112MM (S.F.L)

SECOND FLOOR LEVEL
+8018MM (S.F.L)

MEZZANINE FLOOR LEVEL
+1830MM (S.F.L)

GROUND FLOOR LEVEL
+550MM (S.F.L)

SIDE ELEVATION E2

COPYRIGHT: THE CONCEPT AND DESIGN IN THIS DRAWING ARE THE PROPERTIES OF SPACES INC. UNAUTHORIZED USE OF ANY AND OR COPYING OF WHOLE OR PART OF THIS DRAWING, CONCEPT OR DESIGN OR USE ON PROJECTS OR SITES OTHER THAN SPECIFIED ON THIS DRAWING IS PROHIBITED.
SECTION THROUGH X - X

SCALE 1: 100

FIFTH FLOOR LEVEL
+ 17300MM (S.F.L)

FOURTH FLOOR LEVEL
+ 14206MM (S.F.L)

THIRD FLOOR LEVEL
+ 11112MM (S.F.L)

SECOND FLOOR LEVEL
+ 8016MM (S.F.L)

FIRST FLOOR LEVEL
+ 4925MM (S.F.L)

MEZZANINE FLOOR LEVEL
+ 1830MM (S.F.L)

GROUND FLOOR LEVEL
+ 150MM (S.F.L)

LIFT MACHINE ROOM LEVEL
+ 20330MM (S.F.L)

DECK LEVEL
+ 18335MM (S.F.L)

LIFT MACHINE ROOM ROOM ROOF LEVEL
+ 22500MM (S.F.L)

APPROVED

Housing Development Corporation Ltd.

Copyright: The concept and design in this drawing are the properties of Spaces Inc. Unauthorized use of any and/or copying of whole or part of this drawing, concept or design or use on projects or sites other than specified on this drawing is prohibited.

Project: HULHUMALE' LOT 10079

06 storey residential building

Republic of Maldives

Approved by:

A. THAHSEEN

BOR2014028A

A. AMEEZ

BOR2016038E

Rev.: 2G

20 MAY 2016
INTERNAL FINISHES LEGEND

F1 - 1500mm x 600mm HOMOGENEOUS FLOOR TILES & GROUT
F2 - 600mm x 600mm CERAMIC HOMOGENEOUS FLOOR TILES
F3 - 600mm x 1200mm CERAMIC HOMOGENEOUS FLOOR TILES
F4 - 300mm x 300mm CERAMIC HOMOGENEOUS FLOOR TILES
F5 - INDUSTRIAL FLOOR

S1 - 12mm THICK x 100mm HIGH TIMBER SKIRTING FOR COMMON ROOM & VARNISHED
S2 - 12mm THICK x 100mm HIGH CEMENT SKIRTING
S3 - 500mm x 300mm GLOSS HOMOGENEOUS WALL TILES

W1 - 120mm THICK CEMENT BLOCKS WITH 15mm TUCK POINT FINISH
W2 - 500mm x 300mm GLOSS HOMOGENEOUS WALL TILES

INTERNAL FINISHING CODE

<table>
<thead>
<tr>
<th>FROM / FINISH</th>
<th>CODE</th>
<th>CODE</th>
<th>CODE</th>
<th>CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>WALL / CEILING</td>
<td>F1</td>
<td>S1</td>
<td>S2</td>
<td>W1</td>
</tr>
<tr>
<td>FLOOR / ROOM</td>
<td>F2</td>
<td>F3</td>
<td>F4</td>
<td>F5</td>
</tr>
</tbody>
</table>

GENERAL NOTE:
1. 150x50 cm CONCRETE PARAPET SHALL BE CASTED AT THE BOTTOM OF ALL EXTENSION
2. 150x150 cm RC AND BEAM SHALL BE CASTED AT MID HEIGHT OF ALL WALLS
3. RC LAVatories MUST BE PROVIDED ON TOP OF ALL DOORS AND WINDOWS
4. PROPER WATER PROOFING SOLUTIONS ARE TO BE PROPOSED BY THE CONTRACTOR AND APPROVED BY THE ENGINEER
5. STEPS OF THE STAIRCASE SHALL BE FINISHED WITH HOMOGENEOUS TILES C/W NOSING TILES & SKIRTING APPROVED BY THE ARCHITECT
6. ALL WALLS OF THE LOBBY SHALL BE FINISHED WITH 600X600mm HOMOGENEOUS TILES APPROVED BY THE ARCHITECT
7. ALL TOILETS EXCEPT TOILETS SHALL BE FINISHED WITH 600X600mm HOMOGENEOUS TILES APPROVED BY THE ARCHITECT
8. TOILETS, SHOWERS & SLICE ROOMS & THEIR RESPECTIVE LOBBIES TO HAVE NON-SLIP CERAMIC FLOOR TILES
9. TOILETS, SHOWERS, 500MM LOWER THAN THE FLOOR, OR RESPECTIVE FLOORS, ALL THE TILES SHOULD BE SPECIFIED BY THE CONTRACTOR AND APPROVED BY THE CLIENT
10. ALL FINISHING MATERIALS SHALL BE APPROVED BY THE ARCHITECT
11. ALL EXTERIOR WALLS SHALL BE FULL BLOCK MASONRY OR PLASTER SMOTHERED GROUNDS
12. MATERIALS, 530 OR EQUIVALENT CHEMICAL SHOULD BE APPLIED IN ALL THE TOILETS AND BALCONY FLOORS UP TO 2 FEET HIGH ON THE WALLS AFTER SCREENING
13. ALL THE WALLS EXPOSED TO RAIN INCLUDING OPEN VOIDS SHOULD BE FINISHED WITH "REGULAR 720" OR EQUIVALENT CHEMICAL
14. "RASTRITE 20" OR EQUIVALENT CHEMICAL SHOULD BE USED FOR ALL THE TILES
15. "RASTRITE 550" OR EQUIVALENT SHOULD BE USED FOR GROUT

ALL THE WORK SHOULD BE CARRIED OUT ACCORDING TO THE CONSULTANT

MEZZANINE FLOOR PLAN
First Floor Plan

General Notes:
1. All doors in the building shall be finished with wooden doors.
2. All windows shall be finished with wooden frames.
3. All ceilings shall be finished with false ceiling.
4. All walls shall be finished with cement blocks.
5. All basement slabs shall be finished with concrete slabs.
6. All external walls shall be finished with cement blocks.
7. All internal walls shall be finished with plasterboard.
8. All external walls shall be finished with cement blocks.
9. All internal walls shall be finished with plasterboard.
10. All external walls shall be finished with cement blocks.
11. All internal walls shall be finished with plasterboard.
12. All external walls shall be finished with cement blocks.
13. All internal walls shall be finished with plasterboard.
14. All external walls shall be finished with cement blocks.
15. All internal walls shall be finished with plasterboard.

Internal Finishes Legend:
- **Floor:**
 - 1:500mm
 - 1:600mm
 - 1:700mm
 - 1:800mm
- **Wall:**
 - 1:500mm
 - 1:600mm
 - 1:700mm
 - 1:800mm
- **Ceiling:**
 - 1:500mm
 - 1:600mm
 - 1:700mm
 - 1:800mm

Materials:
- **Concrete Slab:**
 - 1:500mm
 - 1:600mm
 - 1:700mm
 - 1:800mm
- **Plasterboard:**
 - 1:500mm
 - 1:600mm
 - 1:700mm
 - 1:800mm
- **Cement Block:**
 - 1:500mm
 - 1:600mm
 - 1:700mm
 - 1:800mm

Copyright:
The concept and design in this drawing are the properties of Spaces Inc. Unauthorized use of any kind or copying of whole or part of this drawing concept or design is prohibited.
SECOND FLOOR PLAN

INTERIOR FINISHES (LCND)

1. C/D: VARIOUS SIZES FOR LIVING & DINING FLAT PANELS
2. E: tile FOR WET AREAS, KITCHEN & BATHROOM FLOOR TILES (600 X 600 mm)
3. F: tile FOR WET AREAS, KITCHEN & BATHROOM FLOOR TILES (150 X 150 mm)
4. G: VARIOUS SIZES FOR LIVING & DINING FLAT PANELS
5. H: VARIOUS SIZES FOR WET AREAS, KITCHEN & BATHROOM FLOOR TILES

SURFACING

1. E: CEMENT TILES WITH 600X600 mm PLASTERED FINISH, ETHER SHEET EXPOSED IN AREA (18 mm)

WALLS

1. 600X300 mm CERAMIC HOMOGENEOUS WALL TILES

CEILING

1. 600X600 mm HOMOGENEOUS CEIL TILES

INTERIOR FINISH CODES

ROOM NO. FLOOR SIZE DEFAULT TOTAL ORDER COLOR

F4 - 600X600 CERAMIC HOMOGENEOUS FLOOR TILES (SEMISKID)
F3 - 300X300 CERAMIC HOMOGENEOUS FLOOR TILES (SEMISKID)
F2 - 120X120 CEMENT BLOCKS WITH 60X60 mm CEMENT BLOCKS
F1 - 120X120 CEMENT BLOCKS WITH 60X60 mm CEMENT BLOCKS

GENERAL NOTE

1. 150X150 mm CONCRETE PARAPET SHALL BE CASTED AT THE BOTTOM OF ALL EXTERIOR WALLS.
2. 150X150 mm RC MID BEAM SHALL BE CASTED AT MID HEIGHT OF ALL WALLS.
3. RC CAPS ARE TO BE PROVIDED ON TOP OF ALL DOORS AND WINDOWS.
4. PROPER WATER PROOFING SOLUTIONS ARE TO BE PROPOSED BY THE CONTRACTOR AND APPROVED BY THE ENGINEER.
5. STEPS OF THE STAIRCASES SHALL BE FINISHED WITH HOMOGENEOUS TILES ONLY NON-SLIP, SUBMIT APPROVED BY THE ARCHITECT.
6. ALL WALLS OF THE LOBBY SHALL BE FINISHED WITH HOMOGENEOUS TILES ONLY NON-SLIP, SUBMIT APPROVED BY THE ARCHITECT.
7. ALL FLOORS EXCEPT TOILETS SHALL BE FINISHED WITH HOMOGENEOUS TILES APPROVED BY THE ARCHITECT.
8. ALL TOILETS, SHOWERS, SLICE ROOMS AND DOORS AND WINDOWS SHALL BE SPECIFIED BY THE CONTRACTOR AND APPROVED BY THE ARCHITECT.
9. ALL FINISHING MATERIALS SHALL BE APPROVED BY THE ARCHITECT.
10. ALL CROWN WALLS SHALL BE TWIN BLOCK MASONRY CAN PLASTER ON BOTH SIDES.
11. "INTERNATIONAL 305" OR EQUIVALENT CHEMICAL SHOULD BE APPLIED IN ALL THE TOILETS AND BALCONY FLOORS UP TO 6 FEET HIGH ON THE WALLS.
12. ALL THE WALLS EXPOSED TO RAIN INCLUDING DOORS NOSES SHOULD BE PLASTERED WITH "REZIN-COM" OR EQUIVALENT CHEMICAL.
13. "RINSTONE 35" OR EQUIVALENT CHEMICAL CAN BE USED FOR ALL THE TUMBS.
14. "KAISTONE 30" OR EQUIVALENT CHEMICAL SHOULD BE USED FOR ALL THE TUMBS.

All the work should be carried out according to the tender documents.
Annex 4d: Column schedule, beam strip and foundation details

TERRACE CONCRETE PARAPET WALL SECTIONAL DETAILS

![Diagram of the 2 meter high concrete parapet wall](image)

![Diagram of the 1.2 meter high parapet wall](image)

COLUMN SCHEDULE

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>TERRACE FLOOR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AT GRIDS C-3 & K-4 ONLY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4T16 R6@150</td>
<td></td>
</tr>
<tr>
<td>FIFTH FLOOR</td>
<td>3T16 R8@150</td>
<td>3T16 R8@150</td>
<td>6T10 R6@150</td>
</tr>
<tr>
<td></td>
<td>R6@150</td>
<td>R6@150</td>
<td>R6@150</td>
</tr>
<tr>
<td>SECOND TO FOURTH FLOOR</td>
<td>3T20 R6@150</td>
<td>3T20 R6@150</td>
<td>6T12 R6@150</td>
</tr>
<tr>
<td></td>
<td>R6@150</td>
<td>R6@150</td>
<td>R6@150</td>
</tr>
<tr>
<td>GROUND & FIRST FLOOR</td>
<td>3T25 R6@150</td>
<td>3T25 R6@150</td>
<td>6T20 R6@150</td>
</tr>
<tr>
<td></td>
<td>R6@150</td>
<td>R6@150</td>
<td>R6@150</td>
</tr>
</tbody>
</table>

BEAM DETAIL

![Diagram of beam detail](image)

APPROVED Housing Development Corporation Ltd.
IMPORTANCE NOTE:
CONFIRMATION OF TIME DIMENSIONS FROM
OVERHEAD HEIGHT: 3650mm
BRAND: MITSUBISHI LIFT DETAIL

MIDSPAN

ST1 SUPPORT

LIFT PLAN

ABOULLA RAMEEZ

AHMED THAHSEEN

REPUBLIC OF MALDIVES

ADK HOLDING

10019.

STRIPL DETAIL

APPROVED

MIDSPAN

B6

115-195 G/C

2T16-175

115-390 G/C

2T116-178

2T16-190

2T12

6T16

4T20

6T20

4T16

LIFT DETAIL

BRAND: MITSUBISHI
MODEL: HSE7.- 4RE & 6person
WEIGHT: 1580kg
ORDER: R21703-21-0050

IMPORTANT NOTE:
BEFORE STARTING FOUNDATION GET CONFIRMATION OF THE DIMENSIONS FROM LIFT PROVIDER.

APPROVED

ADK HOLDING

10019.

LIFT PLAN

ABOULLA RAMEEZ

AHMED THAHSEEN

REPUBLIC OF MALDIVES

ADK HOLDING

10019.
SECTION THROUGH LIFT FOUNDATION

- 50/65mm angle bar bracing that is to be removed before the backfilling and casting of concrete.
- 50/65mm x 6mm MS sheets pinned into the ground floor sloping each other.
- 400mm x 100mm MS sheet piled to the ground.
- 200 x 75mm Timber bracing at both ends.
- 100 x 75mm Timber bracing at both ends.
- 120mm thick RC wall.
- Water bar.
- Wet membrane (DPM).
- Embedded length at least 400mm.
- Additional property.

PROTECTION OF EXISTING WALLS ALONG THE PERIMETER OF THE PROPOSED SITE.

SHORING DETAIL

- Proposed base.
- Bottom of existing/future wall.
- Depth of proposed base.
- 50/65mm x 6mm MS sheets pinned into the ground floor sloping each other.
- Dotted lines indicate the location of proposed base.
- Additional property.
- Wet membrane (DPM).
- Embedded length at least 400mm.
- 700 x 100mm MS sheet piled to the ground.
- Angle bar bracing.
- Timber bracing.
- New foundations.
- Where footings coincide or fall on the same grid.

NOTES

- Insert soil at bottom to existing wall footing.
- Done w/ consent of the owner.
- Done w/ consent of the owner.
- Excavation along the adjacent buildings shall be done in phases so as to prevent loosening of soil from the bottom of existing foundations. No partial excavation shall exceed a width of 1m at a time. Masonry retaining wall must be complete immediately after the excavation.
- Allow at least 24hr intervals between each excavation.
- Protection of existing walls along the perimeter of the proposed site.

DRAWN & CHECKED

- Ahmed Thahseen
- ASH Owen
- Ahmed Thahseen
- 20/08/2017
- Approved by
- 08/08/2017
- Ahmed Thahseen
- 20/08/2017
Hulhumale' lot 10079 is located in Hulhumale' and visual observation shows that the first layer (-750mm thick) consists of Very Loose Fine Clean SAND, Hard Corals with Sea Shells. From -750mm to -1100mm consists of Medium Clean SAND, Hard Corals with Sea Shells mixture from -1100 to -1500 mm consists of Dense Fine Clean SAND, Hard Corals with Sea Shells. Garbage is not visible in the sample. The water table depth is -1500 mm and the foundation will be located at a depth of -2210 mm. Hence dewatering will be required.

Note: The contractor shall carry out soil investigation of the sites to provide the Client a comprehensive report of the geotechnical information of the site to cover, but not limited to, the type of soils, soil properties, layers, strengths, bearing capacity, lateral sliding resistance of soils, critical voids within the site. The geotechnical information contained in the final document prepared by the contractor will be used to construction of the proposed new developments to ensure bearing capacity of soil before commencing work.
GENERAL NOTE:

CONCRETE COVER TO RE bars:

*SLAB
*BEAM SIDES & SOFFITS
*COLUMN
*FOUNDATION AND BEAM
*CONCRETE GRADE F/PD DESIGN
*STEEL GRADE (HIGH YIELD DEFORMED)
*STEEL GRADE (MILD SMOOTH ROUND)

PLANT LAYOUT LENGTHS:

* 10mm Ø BARS = 400mm
* 12mm Ø BARS = 500mm
* 16mm Ø BARS = 650mm
* 20mm Ø BARS = 900mm

TIMBER:

ALL TIMBER MEMBERS SHOULD BE OF TREATMENTS
TIMBER GRADE = C30 (BS2568) UNLESS
OTHER WISE STATED

WATER PROOFING:

CONCRETE SURFACES EXPOSED TO GROUND, RAIN AND SEA WATER SHOULD BE TREATED
WITH WATER PROOFING APPLICATION
ACCORDING TO SPECIALIST'S DETAIL.

150 mm THK RC WALL
100X120 B/M SINGLE LAYER UP TO GROUND Fl,
100X180 B/M SINGLE LAYER FROM GROUND Fl.

APPROVED

Little Development Corporation Ltd.
PROJECT: HULHUMALE LOT 10079
05 STOREY RESIDENTIAL BUILDING

BASEMENT FLOOR SLAB REINFORCEMENT PLAN

SLAB FINISH LEVEL = 450MM
SLAB FINISH LEVEL = 1180MM

GENERAL NOTE:

CONCRETE COVER TO RFMNT:

*SLAB: 30MM
*BEAM SIDES,ADOPTS: 15MM
*COLUMN: 40MM
*FOUNDATION GROUND SLAB AND BEAM: 50MM
*CONCRETE SLAB FINISH DESIGN:
*STEEL GRADE (HIGH YIELD DEFORMED)
*STEEL GRADE (MILD SMOOTH ROUND)

RFMNT LAP LENGTHS:

* 10mm Ø BARS = 400mm
* 12mm Ø BARS = 500mm
* 16mm Ø BARS = 600mm
* 20mm Ø BARS = 800mm

TIMBER

ALL TIMBER MEMBERS SHOULD BE OF TREATED TIMBER GRADE = C20/25 (BS2568) UNLESS OTHERWISE STATED.

WATER PROOFING:

CONCRETE SURFACES EXPOSED TO GROUND, RAIN AND SEA WATER SHOULD BE TREATED WITH WATER-PROOFING APPLICATION ACCORDING TO SPECIALISTS DETAIL.

NOTES:

*STEEL GRADE (HIGH YIELD DEFORMED)
*STEEL GRADE (MILD SMOOTH ROUND)

RFMNT LAP LENGTHS:

* 10mm Ø BARS = 400mm
* 12mm Ø BARS = 500mm
* 16mm Ø BARS = 600mm
* 20mm Ø BARS = 800mm

TIMBER

ALL TIMBER MEMBERS SHOULD BE OF TREATED TIMBER GRADE = C20/25 (BS2568) UNLESS OTHERWISE STATED.

WATER PROOFING:

CONCRETE SURFACES EXPOSED TO GROUND, RAIN AND SEA WATER SHOULD BE TREATED WITH WATER-PROOFING APPLICATION ACCORDING TO SPECIALISTS DETAIL.

NOTES:**

- SLAB THICKNESS = 135MM
- TOP REINFORCEMENT = T10@150 B/W (AS SHOWN)
- BOTTOM REINFORCEMENT = T10@150 B/W THROUGHOUT
- 150MM BASEMENT RC BOUNDARY WALL FROM RC SLAB TO NIL
- REINFORCEMENT = T10@150 G/C B/W THROUGHOUT (SINGLE LAYER)

APPROVED

PROF.

REVISION NOTES:

PROJECT NO: 6PR2015022A-1

DRAUGHTING REVISIONS

DRAWING TITLE

BASEMENT FLOOR SLAB

REINFORCEMENT PLAN

SCALE 1:100

20 MAY 2016
GENERAL NOTE:

CONCRETE COVER TO RFMBT:

- SLAB: 30mm
- BEAM SIZES & OFFSETS: 250mm
- COLUMN: 400mm
- FOUNDATION GROUND SLAB AND BEAM: 500mm
- CONCRETE GRADE FOR DESIGN:
 - STEEL GRADE (HIGH YIELD DEFORMED): 450N/mm²
 - STEEL GRADE (MILD SMOOTH ROUND): 250N/mm²

RFMBT LAP LENGTHS:

- 10mm Ø BARS = 600mm
- 12mm Ø BARS = 500mm
- 16mm Ø BARS = 600mm
- 20mm Ø BARS = 600mm

WATER PROOFING:

CONCRETE SURFACES EXPOSED TO GROUND, RAIN AND SEA WATER SHOULD BE TREATED WITH WATER PROOFING APPLICATION ACCORDING TO SPECIALISTS DETAIL.
GENERAL NOTE:

CONCRETE COVER TO REINFORCEMENT:

- *SLAB*:
 - Beam sizes and girder:
 - 30mm
 - Column:
 - 50mm
 - Foundation ground slab and beam:
 - 50mm
 - Concrete grade for design:
 - C30 (BS 2068)
 - Steel grade (high yield deformed):
 - 415N/mm²
 - Steel grade (mild smooth round):
 - 250N/mm²

REINFORCEMENT LAP LENGTHS:

- 10mm @ BARS = 400mm
- 12mm @ BARS = 500mm
- 16mm @ BARS = 600mm
- 20mm @ BARS = 800mm

TIMBER:

All timber members should be of treated timber grade = C30 (BS 2068) unless otherwise stated.

WATERPROOFING:

Concrete surfaces exposed to ground, rain and sea water should be treated with water proofing application according to specialist's detail.

NOTES:

- Slab thickness = 135mm
- Top reinforcement = T10 @ 150 B/W (as shown)
- Bottom reinforcement = T10 @ 150 B/W throughout
- All reinforcements discontinuous over voids

MEZZANINE FLOOR SLAB REINFORCEMENT PLAN

HULHUMALE LOT 10079
50 STOREY RESIDENTIAL BUILDING

ARCHITECTURAL DESIGNER:

ABDULLA HAMZO

CONTRACTOR:

SPACES INC.

ARCHITECTURAL ENGINEERS:

ABDULLA HAMZO

CONTRACTOR:

SPACES INC.

ARCHITECTURAL ENGINEERS:

ABDULLA HAMZO

CONTRACTOR:

SPACES INC.
GENERAL NOTE:

CONCRETE COVER TO ARMATURE:
- *SALB = 30mm
- *BEAM SIDES & SOFFITS = 35mm
- *COLUMN = 40mm
- *FOUNDATION GROUND SALB AND BEAM = 50mm
- *CONCRETE SPREAD F Grinding Design
- *STEEL GRADE (HIGH - YIELD DEFORMED) = 415N/m²
- *STEEL GRADE (MILD SMOOTH ROUND) = 250N/m²

ARMATURE LAP LENGTHS:
- 16mm Ø BARS = 650mm
- 20mm Ø BARS = 900mm

TIMBER:
ALL TIMBER MEMBERS SHOULD BE OF TREATED.
TIMBER GRADE = C30 (BS2568) UNLESS OTHERWISE STATED

WATER PROOFING:
CONCRETE SURFACES EXPOSED TO GROUND,
RAIN AND SEA WATER SHOULD BE TREATED
WITH WATER PROOFING APPLICATION
ACCORDING TO SPECIALIST'S DETAIL.
GENERAL NOTE:

CONCRETE COVER TO REINFORCE:

*SLAB
BEAM, BEAMS & SOFFITS
COLUMN
FOUNDATION GROUND SLAB AND BEAM
CONCRETE GRADE PER DESIGN
STEEL GRADE (HIGH YIELD DEFORMED)
STEEL GRADE (MILD SMOOTH ROUND)

REINFORCEMENT LAP LENGTHS:
* 10mm Ø BARS = 400mm
* 12mm Ø BARS = 500mm
* 16mm Ø BARS = 650mm
* 20mm Ø BARS = 900mm

TIMBER
ALL TIMBER MEMBERS SHOULD BE OF TREATED TIMBER GRADE = C30/BS2596 UNLESS OTHERWISE STATED

WATER PROOFING:
CONCRETE SURFACES EXPOSED TO GROUND, RAIN AND SEA WATER SHOULD BE TREATED WITH WATER PROOFING APPLICATION ACCORDING TO SPECIALISTS' DETAIL.

NOTES:
- SLAB THICKNESS = 135 MM
- TOP REINFORCEMENT = T10@150 B/W (AS SHOWN)
- BOTTOM REINFORCEMENT = T10@150 B/W THROUGHOUT
- ALL REINFORCEMENTS DISCONTINUE OVER Voids

- SLAB THICKNESS OF SHADIA REGION = 150MM
- TOP AND BOTTOM REINFORCEMENT = T10@150 B/W THROUGHOUT

REMARKS:
- OTHER SLAB THICKNESS = 100 MM
- TOP REINFORCEMENT = T10@150 B/W (AS SHOWN)
- BOTTOM REINFORCEMENT = T10@150 B/W THROUGHOUT
- ALL REINFORCEMENTS DISCONTINUE OVER Voids

- SLAB THICKNESS OF SHADIA REGION = 150MM
- TOP AND BOTTOM REINFORCEMENT = T10@150 B/W THROUGHOUT

PROJECT:
HULHUMALE LOT 100019
05 STOREY RESIDENTIAL BUILDING

AKRAM M.Y, AREA
REPUBLIC OF MALDIVES

COPYRIGHT: THE CONCEPT AND DESIGN IN THIS DRAWING ARE THE PROPERTY OF SPACES PTE. LTD. UNAUTHORIZED USE OR ANY PART OR PORTION OF SAME IS PROHIBITED. GENERAL OR USE BY PRODUCTS OR OTHER THAN SPECIFIED ON THIS DRAWING IS PROHIBITED.
SECOND TO FOURTH FLOOR SLAB REINFORCEMENT PLAN

NOTES:
- OTHER SLAB THICKNESS = 135 MM
- TOP REINFORCEMENT = T10@150 B/W (AS SHOWN)
- BOTTOM REINFORCEMENT = T10@150 B/W THROUGHOUT
- ALL REINFORCEMENTS DISCONTINUE OVER VOIDS
- SLAB THICKNESS OF SHAPED REGION = 150 MM
- TOP AND BOTTOM REINFORCEMENT = T10@150 B/W C/C BAY THROUGHOUT

GENERAL NOTE:
CONCRETE COVER TO REINFORCEMENT:
- SLAB = 30MM
- TEAR SIDES & SORTS = 50MM
- COLUMN = 40MM
- FOUNDATION GROUND SLAB AND BEAM = 50MM
- COLUMN GRADE FOR DESIGN = STEEL GRADE (HIGH YIELD DEFORMED)
- STEEL GRADE (MILD SMOOTH ROUND)

REINFORCEMENT LENGTHS:
- 10mm Ø BARS = 400mm
- 12mm Ø BARS = 500mm
- 16mm Ø BARS = 650mm
- 20mm Ø BARS = 800mm

WOOD:
ALL TIMBER MEMBERS SHOULD BE OF TREATED TIMBER GRADE C30 (BS2568) UNLESS OTHERWISE STATED

WATER PROOFING:
CONCRETE SURFACES EXPOSED TO GROUND, RAIN AND SEA WATER SHOULD BE TREATED WITH WATER PROOFING APPLICATION ACCORDING TO SPECIFICATION DETAIL.

RULING: MEAL J BRI

STAGE 10079-ST-36

ISSUED BY

COPYRIGHT: THE CONCEPT AND DESIGN IN THIS DRAWING ARE THE PROPERTY OF SPCS INC. UNAUTHORIZED USE OR REPRODUCTION OF THIS DRAWING, CONCEPT OR DESIGN OR USE ON PROJECTS OR OTHERS THAN SPECIFIED ON THIS DRAWING IS PROHIBITED.
GENERAL NOTE:

CONCRETE COVER TO RFMNT:

* SAIL
* BEAM SIDES & SOFFITS
* COLUMNS
* FOUNDATION GROUND SAIL AND BEAM
* CONCRETE GRADE (HARDENED) DEFORMED)
* STEEL GRADE (HIGH - YIELD DEFORMED)
* STEEL GRADE (MILD SMOOTH ROUND)

RFMNT LAP LENGTHES:

* 10mm Ø BARS = 400mm
* 12mm Ø BARS = 500mm
* 16mm Ø BARS = 600mm
* 20mm Ø BARS = 900mm

TIMBER

ALL TIMBER MEMBERS SHOULD BE OF TREATED
TIMBER GRADE = C30 (BS2568) UNLESS
OTHERWISE STATED

WATER PROOFING:

CONCRETE SURFACES EXPOSED TO GROUND,
RAIN AND SEA WATER SHOULD BE COVERED
WITH WATER PROOFING APPLICATION
ACCORDING TO SPECIALIST'S DETAIL.
GENERAL NOTE:

CONCRETE COVER TO REINFORCEMENT:

- slab = 30mm
- beam & column = 45mm
- foundation, slab & beam = 50mm
- concrete grade for design = 2500 kg/m³
- steel grade (high-yield deformed) = 415 N/mm²
- steel grade (mild smooth round) = 250 N/mm²

REINFORCEMENT LAP LENGTHS:

- 10mm Ø bars = 400mm
- 12mm Ø bars = 500mm
- 16mm Ø bars = 600mm
- 20mm Ø bars = 900mm

TIMBER:

- all timber members should be treated
- timber grade = C30 (BS2568) unless otherwise stated

WATER PROOFING:

- concrete surfaces exposed to ground, rain and sea water should be treated with water proofing application according to specialists' detail.

NOTES:

- slab thickness = 135mm
- top reinforcement = T10@150 B/W (as shown)
- bottom reinforcement = T10@120 B/W throughout

- slab thickness of shaded region = 200mm
- top reinforcement = T12@150 B/W throughout
- bottom reinforcement = T12@120 B/W throughout

REINFORCED PARAPET WALL THICKNESS = 150mm

- reinforced pool and pool gutter wall thickness is 200mm
- with T10@120 B/W vertical and horizontal in 2 layers.

ARCHITECTURAL DESIGN:

STAGE 1

DESIGNER:

Housing Development Corporation Ltd.

PROJECT:

HULHUMALE' LOT 10079

00 STOREY RESIDENTIAL BUILDING

TERRACE SLAB REINFORCEMENT PLAN

NOTES:

- slab thickness = 135mm
- top reinforcement = T10@150 B/W (as shown)
- bottom reinforcement = T10@120 B/W throughout

- slab thickness of shaded region = 200mm
- top reinforcement = T12@150 B/W throughout
- bottom reinforcement = T12@120 B/W throughout

REINFORCED PARAPET WALL THICKNESS = 150mm

- reinforced pool and pool gutter wall thickness is 200mm
- with T10@120 B/W vertical and horizontal in 2 layers.

ARCHITECTURAL DESIGN:

STAGE 1

DESIGNER:

Housing Development Corporation Ltd.
GENERAL NOTE:

CONCRETE COVER TO REINFORCENENT:

-300mm
-330mm
-425mm
-500mm
-500mm
-415mm2
-230mm2

REINFORCEMENT LAP LENGTHS:

- 10mm Ø BARS = 400mm
- 12mm Ø BARS = 500mm
- 16mm Ø BARS = 650mm
- 20mm Ø BARS = 900mm

TIMBER

ALL TIMBER MEMBERS SHOULD BE TREATED:

- TIMBER GRADE = C20(22508) UNLESS OTHERWISE STATED

WATER PROOFING:

CONCRETE SURFACES EXPOSED TO GROUND, RAW AND SEA WATER SHOULD BE TREATED WITH WATER PROOFING APPLICATION ACCORDING TO SPECIALIST'S DETAIL.

NOTES:

- SLAB THICKNESS OF SHADED REGION 150MM
- OTHER SLAB THICKNESS = 135 MM
- TOP AND BOTTOM SLAB REINFORCEMENT = T10@150 B/W THROUGHOUT

DRAWING TITLE: ROOF BEAM PLAN

DRAWING SCALE: 1:100

DRAWN BY: AHMED MAHSEEN

REVISED BY: ABUULLA RAMEEZ

CONCEPT & DESIGN: SPACES INC.

ARCHITECT: ABDULLA RAMEEZ

CONSTRUCTION: SPACES INC.

SPACES INC.

COPYRIGHT: THE CONTENT AND DESIGN IN THIS DRAWING ARE THE PROPERTIES OF SPACES INC. UNAUTHORIZED USE OF ANY PART OR COPYING IN WHOLE OR PART OF THIS DRAWING, CONCEPT OR DESIGN OR USE ON PROJECTS OR SITES OTHER THAN SPECIFIED ON THIS DRAWING IS PROHIBITED.
GENERAL NOTE:

CONCRETE COVER TO REINFORCEMENT:

- *SLAB* = 30mm
- *WALL SIDES & SOFFITS* = 40mm
- *COLUMN* = 45mm
- *FOUNDATION SPANDREL SLAB AND BEAM* = 50mm
- *CONCRETE GRADE FOR DESIGN* = 25N/mm²
- *STEEL GRADE (HIGH YIELD DEFORMED)* = 415N/mm²
- *STEEL GRADE (MILD SMOOTH ROUND)* = 250N/mm²

REINFORCEMENT LAP LENGTH:

- 10mm Ø BARS = 400mm
- 12mm Ø BARS = 500mm
- 16mm Ø BARS = 600mm
- 20mm Ø BARS = 900mm

TIMBER:

ALL TIMBER MEMBERS SHOULD BE OF TREATED TIMBER GRADE - C30/250 UNLESS OTHERWISE STATED

WATER PROOFING:

CONCRETE SURFACES EXPOSED TO GROUND, RAIN AND SEA WATER SHOULD BE TREATED WITH WATER PROOFING APPLICATION ACCORDING TO SPECIALISTS'S DETAIL.

NOTES:

- SLAB THICKNESS OF SHADED REGION 150mm
- OTHER SLAB THICKNESS = 135mm
- TOP AND BOTTOM SLAB REINFORCEMENT = T10@150 B/W THROUGHOUT
Dear Mr. Ibrahim,

Re: EIA – ENVIRONMENTAL IMPACT ASSESSMENT FOR PROPOSED SIX STOREY BUILDING WITH A BASEMENT, LAND LOT A-10079 HULHUMALÈ, MALDIVES

As the proponent responsible for environmental compliance for the above project, I hereby give our financial commitment to implement the monitoring plan, undertake the mitigation measures recommended and to comply with the issues identified in the Environmental Impact Assessment Report submitted to your agency.

Yours sincerely,

[Signature]

Maana Rafiu
WATER QUALITY TEST REPORT

Test Report No: 301226/2016/05

Customer Information:
Mr. Mahmood Riyaz
H. Hithifaai,
Hithah Finivaa magu,
Male'
Repub of Maldives

Sample Description / Location: LOT A10079

Sample Type: Ground water

Sample Date: 20/9/2016

Sample Received Date: 21/9/2016

Test Requisition Form No.: 90016678

Sample No.: 826451

Date of Analysis: 21/9/2016-26/9/2016

ANALYSIS RESULT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Method Descriptions</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Appearance</td>
<td>Visual</td>
<td>Visual</td>
</tr>
<tr>
<td>Conductivity</td>
<td>Method 2510 B. (adapted from Standard methods for the examination of water and waste water, 22nd edition)</td>
<td>µS/cm</td>
</tr>
<tr>
<td>pH</td>
<td>Method 4500- H B. (adapted from Standard methods for the examination of water and waste water, 21st edition)</td>
<td>°C</td>
</tr>
<tr>
<td>Salinity</td>
<td>Method 2520 B. (adapted from Standard methods for the examination of water and waste water, 21st edition)</td>
<td>mg/L</td>
</tr>
<tr>
<td>Hardness, Total</td>
<td>HACH Method 8213</td>
<td>mg/L</td>
</tr>
<tr>
<td>Temperature</td>
<td>Electrometry</td>
<td>°C</td>
</tr>
<tr>
<td>Total Suspended Solids (TSS)</td>
<td>Method 8096 (Adapted from HACH DR5000 Spectrophotometer procedure Manual)</td>
<td>mg/L</td>
</tr>
</tbody>
</table>

Keys:
- %o: Parts Per Thousand, mg/L: Milligram Per Liter, µS/cm: Micro Siemens per centimeter, °C: Degree Celcius
- LoQ: Limit of Quantification

Checked by: Afnan Farooq
Laboratory Executive

Approved by: Mohamed Eyman
Senior Technical Officer

Notes:
- **Sampling Authority:** Sampling was not done by MWSC Laboratory
- **LoQ:** Limit of Quantification
- **LoQ:** Limit of Quantification

This report shall not be reproduced except in full, without written approval of MWSC.

This test report is ONLY FOR THE SAMPLES TESTED.

~ Information Supplied by the customer

***************END OF THE REPORT***************
Annex 7: Scoping meeting Attendence List

Environmental Protection Agency
Male', Rep of Maldives

Meeting: Halhun Male, 10079 6 storey building with basement
Date: 7/9/16
Time: 10:00

<table>
<thead>
<tr>
<th>Name</th>
<th>Designation</th>
<th>Office</th>
<th>Email</th>
<th>Phone No.</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 Zinaf</td>
<td>MROR (Urban Planner)</td>
<td>HDC</td>
<td>zinaf@hdc.com.mv</td>
<td>7694221</td>
<td></td>
</tr>
<tr>
<td>02 NAIFZ</td>
<td>Senior Municipal</td>
<td>HDC</td>
<td>naif@hdc.com.mv</td>
<td>7787156</td>
<td></td>
</tr>
<tr>
<td>03 Mohammed Reza</td>
<td>Consultant Engineer</td>
<td>Coralis</td>
<td>mohamed.reza@coralis.com</td>
<td>7890307</td>
<td></td>
</tr>
<tr>
<td>04 Ibrahim Aslam</td>
<td>Technician</td>
<td>Stelco</td>
<td>Ibrahim.Aslam@stelco.com</td>
<td>7772986</td>
<td></td>
</tr>
<tr>
<td>05 Amjad Mohamad</td>
<td>E. Engineer</td>
<td>Stelco</td>
<td>Amjad.Mohamad@stelco.com</td>
<td>7783672</td>
<td></td>
</tr>
<tr>
<td>06 HAMEM THANZIEN</td>
<td>Architect</td>
<td>SPACS</td>
<td>hameem@gmail.com</td>
<td>7773846</td>
<td></td>
</tr>
<tr>
<td>07 Amnon Shameen</td>
<td>Representative of Man</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08 Fahimah Reema</td>
<td>Director</td>
<td>EPA</td>
<td></td>
<td>33387149</td>
<td></td>
</tr>
<tr>
<td>09 Yusef Ahmed</td>
<td>Director EA</td>
<td>EPA</td>
<td>yusef.ahmed@epa.gov.mv</td>
<td>7903373</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>