Please use this identifier to cite or link to this item: http://saruna.mnu.edu.mv/jspui/handle/123456789/5062
Title: Does bathymetry drive coastal whale shark (rhincodon typus) aggregations?
Authors: Copping, Joshua P.
Stewart, Bryce D.
McClean, Colin J.
Hancock, James
Rees, Richard
Keywords: Aquaculture
Fisheries and fish science
Biodiversity
Conservation biology
Marine biology
Spatial and geographic information science
Whale shark
Marine megafauna
Conservation
Bathymetry
Distribution model
Marine ecosystems
South Ari Atoll
Maldives
Issue Date: 8-Jun-2018
Publisher: PeerJ
Citation: Copping, J. P., Stewart, B. D., McClean, C.J., Hancock, J., & Rees, R. (2018), Does bathymetry drive coastal whale shark (rhincodon typus) aggregations?. PeerJ
Abstract: Background. The whale shark (Rhincodon typus) is known to aggregate in a number of coastal locations globally, however what causes these aggregations to form where they do is largely unknown. This study examines whether bathymetry is an important driver of coastal aggregation locations for R. typus through bathymetry's effect on primary productivity and prey availability. This is a global study taking into account all coastal areas within R. typus' range. Methods. R. typus aggregation locations were identified through an extensive literature review. Global bathymetric data were compared at R. typus aggregation locations and a large random selection of non-aggregation areas. Generalised linear models were used to assess which bathymetric characteristic had the biggest influence on aggregation presence. Results. Aggregation sites were significantly shallower than non-aggregation sites and in closer proximity to deep water (the mesopelagic zone) by two orders of magnitude. Slope at aggregation sites was significantly steeper than non-aggregation sites. These three bathymetric variables were shown to have the biggest association with aggregation sites, with up to 88% of deviation explained by the GLMs. Discussion. The three key bathymetric characteristics similar at the aggregation sites are known to induce upwelling events, increase primary productivity and consequently attract numerous other filter feeding species. The location of aggregation sites in these key areas can be attributed to this increased prey availability, thought to be the main reason R. typus aggregations occur, extensively outlined in the literature. The proximity of aggregations to shallow areas such as reefs could also be an important factor why whale sharks thermoregulate after deep dives to feed. These findings increase our understanding of whale shark behaviour and may help guide the identification and conservation of further aggregation sites.
URI: http://saruna.mnu.edu.mv/jspui/handle/123456789/5062
Appears in Collections:ތިމާވެށި
Environment A


Files in This Item:
File Description SizeFormat 
Does bathymetry drive coastal whale shark.pdf1.14 MBAdobe PDFView/Open


Items in Saruna are protected by copyright, with all rights reserved, unless otherwise indicated.